• Title/Summary/Keyword: Markov network

Search Result 374, Processing Time 0.029 seconds

An Analysis on Prediction of Computer Entertainment Behavior Using Bayesian Inference (베이지안 추론을 이용한 컴퓨터 오락추구 행동 예측 분석)

  • Lee, HyeJoo;Jung, EuiHyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.3
    • /
    • pp.51-58
    • /
    • 2018
  • In order to analyze the prediction of the computer entertainment behavior, this study investigated the variables' interdependencies and their causal relations to the computer entertainment behavior using Bayesian inference with the Korean Children and Youth Panel Survey data. For the study, Markov blanket was extracted through General Bayesian Network and the degree of influences was investigated by changing the variables' probabilities. Results showed that the computer entertainment behavior was significantly changed depending on adjusting the values of the related variables; school learning act, smoking, taunting, fandom, and school rule. The results suggested that the Bayesian inference could be used in educational filed for predicting and adjusting the adolescents' computer entertainment behavior.

A study on the Efficient Rate Control Scheme Based on Received Power Level for Mobile Multimedia Streaming System (무선 이동통신 망에서의 효과적인 영상 통신을 위한 전송 신호 세기 기반의 비트율 제어 방법 연구)

  • Jeong, Jae-Yun;Ha, Le Thanh;Duong, Dinh Trieu;Kim, Hye-Soo;Ko, Sung-Jea
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.265-266
    • /
    • 2006
  • In this paper, we propose an efficient rate control scheme based on the received power level to overcome a quality degradation of video under time varying channel condition caused by the movement of mobile devices. First, we statistically obtain the relation between the PLR and the received power level. With this information and the sequences of received power level, we calculate the transition probability for the Markov Channel Model. Then, with using Markov chain rule, we obtain the probability where the channel condition remains in a good state and finally find the efficient target bit rate by multiplying it by the offered bandwidth when the network access has begun. We use TMN8 to adjust the bit rate to our proposed outcome. Experimental results show that the proposed method can efficiently enhance the video quality and provide better PSNR performance than with only using TMN8 rate control method.

  • PDF

Phoneme segmentation and Recognition using Support Vector Machines (Support Vector Machines에 의한 음소 분할 및 인식)

  • Lee, Gwang-Seok;Kim, Deok-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.981-984
    • /
    • 2010
  • In this paper, we used Support Vector Machines(SVMs) as the learning method, one of Artificial Neural Network, to segregated from the continuous speech into phonemes, an initial, medial, and final sound, and then, performed continuous speech recognition from it. A Decision boundary of phoneme is determined by algorithm with maximum frequency in a short interval. Speech recognition process is performed by Continuous Hidden Markov Model(CHMM), and we compared it with another phoneme segregated from the eye-measurement. From the simulation results, we confirmed that the method, SVMs, we proposed is more effective in an initial sound than Gaussian Mixture Models(GMMs).

  • PDF

Using Hidden Markov Model for Stock Flow Forecasting (주식 예측을 위한 은닉 마코프 모델의 이용)

  • Park, Hyoung-Joon;Hong, Da-Hye;Kim, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1860-1861
    • /
    • 2007
  • 주식 예측은 주식 시장이 생긴 이래로 투자자들이나, 금융 전문가들 사이에서 매우 중요한 일이 되어 왔다. 그러한 중요성으로 인해 엘리오트 파동이론과 같은 많은 주식 예측 기법이 제시되었고, 또한 이러한 예�G의 자동화를 위해 인공지능분야에서도 많은 연구가 있어왔다. 주가 예측에 패턴인식 방법을 적용한 기존의 연구로는 주로 ANN(Artificial Neural Network)방식과 은닉 마코프 모델(HMM, Hidden Markov Model)이 있었고, 본 논문에서는 HMM을 이용한 방법을 제안한다. HMM은 시간 순차적인 패턴을 가지는 모델의 인식에 좋은 성능을 보여 주로 음성인식 분야에서 많이 이용되고 있다. 주식 변화 역시 시간 순차적 흐름에 따라 기울기의 변화가 어느 정도 일정한 패턴을 가지는 성질이 있고, 이것은 HMM을 이용한 패턴인식으로 주식의 앞으로의 변화를 예측하기에 적합한 요인이 된다. 본 논문에서는 이를 위해 다음과 같은 과정을 걸쳤다. 첫 번째로 실존 회사의 장기간의 주식 테이터를 기반으로 여러 개의 HMM모델을 학습 하였다. 두 번째로 예측하고자 하는 기간 이전의 주식 변화 데이터를 입력으로 하여, 이전에 이와 유사한 패턴이 있었는지를 HMM을 통해 알아냈다. 마지막으로 이렇게 알아낸 패턴을 이용하여 앞으로의 주식 변화를 예측하였다. 실험은 실제 주식 변화와 예측값의 비교를 통해 정확도를 검증하였다.

  • PDF

Throughput Maximization for a Primary User with Cognitive Radio and Energy Harvesting Functions

  • Nguyen, Thanh-Tung;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3075-3093
    • /
    • 2014
  • In this paper, we consider an advanced wireless user, called primary-secondary user (PSU) who is capable of harvesting renewable energy and connecting to both the primary network and cognitive radio networks simultaneously. Recently, energy harvesting has received a great deal of attention from the research community and is a promising approach for maintaining long lifetime of users. On the other hand, the cognitive radio function allows the wireless user to access other primary networks in an opportunistic manner as secondary users in order to receive more throughput in the current time slot. Subsequently, in the paper we propose the channel access policy for a PSU with consideration of the energy harvesting, based on a Partially Observable Markov decision process (POMDP) in which the optimal action from the action set will be selected to maximize expected long-term throughput. The simulation results show that the proposed POMDP-based channel access scheme improves the throughput of PSU, but it requires more computations to make an action decision regarding channel access.

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

Malware Detection with Directed Cyclic Graph and Weight Merging

  • Li, Shanxi;Zhou, Qingguo;Wei, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3258-3273
    • /
    • 2021
  • Malware is a severe threat to the computing system and there's a long history of the battle between malware detection and anti-detection. Most traditional detection methods are based on static analysis with signature matching and dynamic analysis methods that are focused on sensitive behaviors. However, the usual detections have only limited effect when meeting the development of malware, so that the manual update for feature sets is essential. Besides, most of these methods match target samples with the usual feature database, which ignored the characteristics of the sample itself. In this paper, we propose a new malware detection method that could combine the features of a single sample and the general features of malware. Firstly, a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is merged with the chain to get the final features. Finally, the detectors based on machine learning or deep learning are devised for identification. To evaluate the effect and robustness of our approach, several experiments were adopted. The results showed that the proposed method had a good performance in most tests, and the approach also had stability with the development and growth of malware.

A Study on the Performance Analysis for Partial Buffer Sharing Priority Mechanism with Two Thresholds (두개의 임계치를 갖는 부분 버퍼공유 우선도 방식의 성능 분석에 관한 연구)

  • 박광채;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.381-389
    • /
    • 1994
  • In the communication network, multimedia service such as high quality voice, high speed data, image etc. will be added to the existing service. This service generates new requirements for the communication networks. The priority control mechanism can be used to control multimedia traffics generated by many communication systems. The priority mechanism which assigns prioirities to generated cells according to service quality is one of the traffic control. The priority assignment can be divided by priority criterion for each traffic characteristics such as loss sensitivity and delay sensitivity. In this paper, we alnalyzed the partial buffur sharing (PBS) mechani느 as a traffic control reducing the cell loss, and proposed analysis method. We analyzed the PBS mechanism using classical approach as a Markov chain. In order to validata proposed analysis method, simulation is performed using simulation package SIMSCRIPT 11.5. From this results, we confirmed that proposed analysis method can be verified. Also, we presented cell loss probability of ATM network when this results are to be applied to ATM networks.

  • PDF

Virtual Dialog System Based on Multimedia Signal Processing for Smart Home Environments (멀티미디어 신호처리에 기초한 스마트홈 가상대화 시스템)

  • Kim, Sung-Ill;Oh, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.173-178
    • /
    • 2005
  • This paper focuses on the use of the virtual dialog system whose aim is to build more convenient living environments. In order to realize this, the main emphasis of the paper lies on the description of the multimedia signal processing on the basis of the technologies such as speech recognition, speech synthesis, video, or sensor signal processing. For essential modules of the dialog system, we incorporated the real-time speech recognizer based on HM-Net(Hidden Markov Network) as well as speech synthesis into the overall system. In addition, we adopted the real-time motion detector based on the changes of brightness in pixels, as well as the touch sensor that was used to start system. In experimental evaluation, the results showed that the proposed system was relatively easy to use for controlling electric appliances while sitting in a sofa, even though the performance of the system was not better than the simulation results owing to the noisy environments.

A New Policing Method for Markovian Traffic Descriptors of VBR MPEG Video Sources over ATM Networks (ATM 망에서의 마코프 모델기반 VBR MPEG 비디오 트래픽 기술자에 대한 새로운 Policing 방법)

  • 유상조;홍성훈;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.142-155
    • /
    • 2000
  • In this paper, we propose an efficient policing mechanism for Markov model-based traffic descriptors of VBR MPEG video traffic. A VBR video sequence is described by a set of traffic descriptors using a scene-basedMarkov model to the network for the effective resource allocation and accurate QoS prediction. The networkmonitors the input traffic from the source using a proposed new policing method. for policing the steady statetransition probability of scene states, we define two representative monitoring parameters (mean holding andrecurrence time) for each state. For frame level cell rate policing of each scene state, accumulated average cellrates for the frame types are compared with the model parameters. We propose an exponential bounding functionto accommodate dynanic behaviors during the transient period. Our simulation results show that the proposedpolicing mechanism for Markovian traffic descriptors monitors the sophisticated traffic such as MPEG videoeffectively and well protects network resources from the nalicious or misbehaved traffic.

  • PDF