• 제목/요약/키워드: Markov chain Monte Carlo algorithm

검색결과 70건 처리시간 0.026초

Bayesian Analysis for Heat Effects on Mortality

  • Jo, Young-In;Lim, Youn-Hee;Kim, Ho;Lee, Jae-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제19권5호
    • /
    • pp.705-720
    • /
    • 2012
  • In this paper, we introduce a hierarchical Bayesian model to simultaneously estimate the thresholds of each 6 cities. It was noted in the literature there was a dramatic increases in the number of deaths if the mean temperature passes a certain value (that we call a threshold). We estimate the difference of mortality before and after the threshold. For the hierarchical Bayesian analysis, some proper prior distribution of parameters and hyper-parameters are assumed. By combining the Gibbs and Metropolis-Hastings algorithm, we constructed a Markov chain Monte Carlo algorithm and the posterior inference was based on the posterior sample. The analysis shows that the estimates of the threshold are located at $25^{\circ}C{\sim}29^{\circ}C$ and the mortality around the threshold changes from -1% to 2~13%.

카그라 마코브 체인 몬테칼로 모수 추정 파이프라인 분석 개발과 밀집 쌍성의 물리량 측정 (Development of a Markov Chain Monte Carlo parameter estimation pipeline for compact binary coalescences with KAGRA GW detector)

  • Kim, Chunglee;Jeon, Chaeyeon;Lee, Hyung Won;Kim, Jeongcho;Tagoshi, Hideyuki
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.51.3-52
    • /
    • 2020
  • We present the status of the development of a Markov Chain Monte Carlo (MCMC) parameter estimation (PE) pipeline for compact binary coalescences (CBCs) with the Japanese KAGRA gravitational-wave (GW) detector. The pipeline is included in the KAGRA Algorithm Library (KAGALI). Basic functionalities are benchmarked from the LIGO Algorithm Library (LALSuite) but the KAGRA MCMC PE pipeline will provide a simpler, memory-efficient pipeline to estimate physical parameters from gravitational waves emitted from compact binaries consisting of black holes or neutron stars. Applying inspiral-merge-ringdown and inspiral waveforms, we performed simulations of various black hole binaries, we performed the code sanity check and performance test. In this talk, we present the situation of GW observation with the Covid-19 pandemic. In addition to preliminary PE results with the KAGALI MCMC PE pipeline, we discuss how we can optimize a CBC PE pipeline toward the next observation run.

  • PDF

A Bayesian Wavelet Threshold Approach for Image Denoising

  • Ahn, Yun-Kee;Park, Il-Su;Rhee, Sung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • 제8권1호
    • /
    • pp.109-115
    • /
    • 2001
  • Wavelet coefficients are known to have decorrelating properties, since wavelet is orthonormal transformation. but empirically, those wavelet coefficients of images, like edges, are not statistically independent. Jansen and Bultheel(1999) developed the empirical Bayes approach to improve the classical threshold algorithm using local characterization in Markov random field. They consider the clustering of significant wavelet coefficients with uniform distribution. In this paper, we developed wavelet thresholding algorithm using Laplacian distribution which is more realistic model.

  • PDF

ASSESSING POPULATION BIOEQUIVALENCE IN A $2{\times}2$ CROSSOVER DESIGN WITH CARRYOVER EFFECT IN A BAYESIAN PERSPECTIVE

  • Oh Hyun-Sook
    • Journal of the Korean Statistical Society
    • /
    • 제35권3호
    • /
    • pp.239-250
    • /
    • 2006
  • A $2{\times}2$ crossover design including carryover effect is considered for assessment of population bioequivalence of two drug formulations in a Bayesian framework. In classical analysis, it is complex to deal with the carryover effect since the estimate of the drug effect is biased in the presence of a carryover effect. The proposed method in this article uses uninformative priors and vague proper priors for objectiveness of priors and the posterior probability distribution of the parameters of interest is derived with given priors. The posterior probabilities of the hypotheses for assessing population bioequivalence are evaluated based on a Markov chain Monte Carlo simulation method. An example with real data set is given for illustration.

Bayesian updated correlation length of spatial concrete properties using limited data

  • Criel, Pieterjan;Caspeele, Robby;Taerwe, Luc
    • Computers and Concrete
    • /
    • 제13권5호
    • /
    • pp.659-677
    • /
    • 2014
  • A Bayesian response surface updating procedure is applied in order to update the parameters of the covariance function of a random field for concrete properties based on a limited number of available measurements. Formulas as well as a numerical algorithm are presented in order to update the parameters of response surfaces using Markov Chain Monte Carlo simulations. The parameters of the covariance function are often based on some kind of expert judgment due the lack of sufficient measurement data. However, a Bayesian updating technique enables to estimate the parameters of the covariance function more rigorously and with less ambiguity. Prior information can be incorporated in the form of vague or informative priors. The proposed estimation procedure is evaluated through numerical simulations and compared to the commonly used least square method.

실제 네트워크를 고려한 베이지안 필터 기반 이동단말 위치 추적 (Bayesian Filter-Based Mobile Tracking under Realistic Network Setting)

  • 김효원;김선우
    • 한국통신학회논문지
    • /
    • 제41권9호
    • /
    • pp.1060-1068
    • /
    • 2016
  • 연결정보만을 이용하는 range-free 측위 기법의 성능은 이동성을 갖는 무선 단말 움직임에 취약한 문제점이 있다. 본 논문은 실제 전파 환경을 고려한 실내 네트워크에서 베이지안 필터를 사용하여 실시간으로 움직이는 무선장치를 추적하는 두 가지 알고리즘을 제안하였다. 제안하는 알고리즘은 측정 모델의 선형성에 따라 Kalman filter 와 Markov Chain Monte Carlo (MCMC) particle filter를 적용하였다. Kalman과 MCMC particle filter 기반 알고리즘은 각각 무선단말 간 연결정보를, 이동 단말의 한 홉 간격 내 단말로부터 수신하는 신호의 세기 (RSS: received signal strength)와 연결정보를 혼합한 융합정보를 측정 모델로 사용하였다. 정확한 시뮬레이션을 위해 실내 쇼핑몰 지도를 구현한 네트워크 지형, 그리고 라디오 불규칙도 모델을 적용하였다. 또한, 장애물 존재 여부에 따라 라디오 불규칙도를 분류하였다. 성능평가를 위해 MATLAB 시뮬레이션을 수행하였으며, 기존 range-free 측위 기법보다 향상된 위치정확도를 확인하였다.

Inference of Parameters for Superposition with Goel-Okumoto model and Weibull model Using Gibbs Sampler

  • Heecheul Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제6권1호
    • /
    • pp.169-180
    • /
    • 1999
  • A Markov Chain Monte Carlo method with development of computation is used to be the software system reliability probability model. For Bayesian estimator considering computational problem and theoretical justification we studies relation Markov Chain with Gibbs sampling. Special case of GOS with Superposition for Goel-Okumoto and Weibull models using Gibbs sampling and Metropolis algorithm considered. In this paper discuss Bayesian computation and model selection using posterior predictive likelihood criterion. We consider in this paper data using method by Cox-Lewis. A numerical example with a simulated data set is given.

  • PDF

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

컴퓨터모델의 확률적 보정 및 탄소성 압착문제의 신뢰도분석 응용 (Probabilistic Calibration of Computer Model and Application to Reliability Analysis of Elasto-Plastic Insertion Problem)

  • 유민영;최주호
    • 대한기계학회논문집A
    • /
    • 제37권9호
    • /
    • pp.1133-1140
    • /
    • 2013
  • 컴퓨터 해석모델은 물리현상을 바탕으로 단순화된 모델을 구축하고 해를 구하는 유용한 도구이나, 많은 경우 단순화 가정 또는 입력변수 정보의 미비나 불확실성으로 인해 실제와 차이가 발생한다. 본 연구에서는 이러한 문제에 대해 베이지안 확률이론을 이용하여 실측데이터를 통해 해석모델을 보정하는 방법을 소개하고 이를 파이로 작동기구의 탄소성 압착 문제에 적용한다. 파이로 작동기구는 고에너지의 재료를 원격으로 폭발시켜 작동하는 장치로 그 작동의 신속한 계산을 위해서 단순한 수학모델을 구축하고 실험데이터를 토대로 미지의 입력변수를 확률적으로 보정하였다. 이 때, 확률적 추정을 위해서는 현대적 계산통계기법의 하나인 Markov Chain Monte Carlo 기법을 이용하였으며, 최종적으로 그 결과를 압착거동해석에 활용하여 작동기구의 신뢰도를 평가하였다.

그리드 단체 위의 디리슐레 분포에서 마르코프 연쇄 몬테 칼로 표집 (MCMC Algorithm for Dirichlet Distribution over Gridded Simplex)

  • 신봉기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권1호
    • /
    • pp.94-99
    • /
    • 2015
  • 비모수 베이스 통계학, 확률적 표집에 기반한 추론 등이 기계학습의 주요 패러다임으로 등장하면서 디리슐레(Dirichlet) 분포는 최근 다양한 그래프 모형 곳곳에 등장하고 있다. 디리슐레 분포는 일변수 감마 분포를 벡터 분포로 확장한 형태의 하나이다. 본 논문에서는 감마 분포를 갖는 임의의 자연수 X를 K개의 자연수의 합으로 임의 분할 할 때 각 부분의 크기 비율을 디리슐레 분포에서 표집하는 방법을 제안한다. 일반적으로 디리슐레 분포는 연속적인 (K-1)-단체(simplex) 위에 정의 되지만 자연수로 분할하는 표본은 자연수라는 조건 때문에 단체 내부의 이산 그리드 점에만 정의된다. 본 논문에서는 단체 위의 그리드 상의 이웃 점들의 확률 분포로부터 마르코프연쇄 몬테 칼로(MCMC) 제안 분포를 정의하고 일련의 표본들의 마르코프 연쇄를 구현하는 알고리듬을 제안한다. 본 방법은 마르코프 모델, HMM 및 준-HMM 등에서 각 상태별 시간 지속 분포를 표현하는데 활용 가능하다. 나아가 최근 제안된 전역-지역(global-local) 상태지속 분포를 동시에 모형화하는 감마-디리슐레 HMM에도 응용가능하다.