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A Bayesian Wavelet Threshold Approach for Image Denoising
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Abstract

Wavelet coefficients are known to have decorrelating properties, since wavelet is
orthonormal transformation. But empirically, those wavelet coefficients of images, like
edges, are not statistically independent. Jansen and Bultheel(1999) developed the
empirical Bayes approach to improve the classical threshold algorithm using local
characterization in Markov random field. They consider the clustering of significant
wavelet coefficients with uniform distribution. In this paper, we developed wavelet
thresholding algorithm using Laplacian distribution which is more realistic model.

Keywords : Bayes, image denoise, wavelet, threshold, Markov Chain Monte Carlo, Markov
random field.

1. Introduction

Wavelet thresholding is a method for the reduction of noise in image. It assumes that the
original image can be represented by a small number of large wavelet coefficients. In the case
of an orthogonal transform, ii.d. noise is spread out equally over all coefficients. Selecting the
coefficients with the largest magnitude therefore removes most of noise, while preserving the
essential image information. A number of authors have observed that wavelet coefficients have
non-Gaussian distribution. The intuitive explanation for this is that images typically have
spatial structure consisting of smooth areas interspersed with edges. The smooth regions lead
to near-zero coefficients, and the structures give large amplitude coefficients.

The spatial structure of a wavelet representation follows from the decorrelating properties of
this orthogonal transform. But this decorrelating is not complete, a wavelet transform is also a
multiscale data representation and the coefficients at subsequent resolution levels tend to be
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correlated. Jansen and Bultheel(1999) developed the empirical Bayes approach to improve the
classical threshold algorithm using local characterization in Markov random field. Even though
the above method has dealt with clustering of significant Wavelet coefficients to consider
decorrelating properties within the subband, it didn't take account of a realistic model.

We also developed a wavelet thresholding algorithm using Laplacian distribution which is
more realistic model. This distribution has been used as a marginal statistical model to
Bayesian image restoration by Simoncelli(1999). We combine this distribution with wavelet
threshold for improvement. In this paper, we developed the wavelet threshold algorithm by
using Laplace distribution and compared this with the existing algorithm.

2. The threshold procedure of Bayesian methods

The idea of the typical threshold algorithms is that the largest coefficients capture the
essential image features. Consider an image whose pixels are contaminated with i.i.d. samples
of additive Gaussian noise. Because the wavelet transform is orthonormal, the noise is also
Gaussian in the wavelet domain. Thus, each coefficient in the wavelet expansion of the noise
image can be written as the following type:

W=V+N

where N is the noise vector, V is the uncorrupted wavelet coefficient vector, and W is
the input wavelet coefficient vector.

The following wavelet threshold algorithms were proposed by Donoho and Johnstone(1995).
In hard thresholding one replaces W;; by

W= WX,
where A is a certain threshold and mask variable X; such that X,= K|W]>A}. It keeps the

uncorrupted coefficients and replaces the noisy ones by zero.

In soft thresholding one replaces W,; by

W= (W —2) . sign( W)
The wavelet estimator with soft thresholding is also known as the wavelet shrinkage
estimator since it is related to Stein’s shrinkage estimator.

If we have a prior distribution P(X= x) and a conditional model f y x(wlx), then the

Bayes’ rule allow us to compute the posterior probability:

P(X= x)f yx( wlx)
f W( W)

P X=xIW=w=
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3. Prior and conditional model

3.1 The prior model

We are locking for a multivariate distribution for a binary image X . Qur model of the
image is a Markov random field of binary pixels with the value of each pixel site affected by
its nearest neighbors. Equivalently, it is modeled by the Gibbs distribution

P(X=x)=—% exp{— Ulx)}

where x is configuration of the N pixels, x;,7=1, -, N, the energy function U reflects

the neighborhood structure, and Z is the normalizing constant(called the partition function in
mathematical physics). The particular prior probability we place on the configuration is the
Ising model for which

U ==8 2 xx;

where the sum is taken over pairs of sites (7,7) which are nearest neighbors, and A is
positive parameter.

3.2 The conditional model

We need a conditional density f g x( w|x). Since this conditional model deals with the
local significance measure, we write f g x( wl| x)= IIAwjix,) . This density expresses that if
the label X,;=1, ie. if the corresponding wavelet coefficient is sufficiently noise-free, a large

value of V; is probable. We now consider a model for noise-free wavelet coefficients

following Laplacian distribution with a two-parameter density of the form[4}:

e—-lv/Si’
Pyix(vll)= )

where the normalization constant is Z(s, p) =2 %2 I’(—};) . The parameters {s, p} are estimated

by maximizing the likelihood of the data under the model. Typical values for p range

between 0.5 and 0.8. If noise N; has a Gaussian density M0,0%), it follows to verify that

2

el = [ 26”0 e Fant [ e T e P an

The more simple model has been studied by the assuming that noise-free coefficients are
uniformly distributed on [—g,—0d]U[o, ], ¢ being the maximum coefficient magnitude,

which is a parameter of the model that has to be determined{2]. If noise N, has a Gaussian
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density N0, ¢%), it is easy to verify that
f wmx (wll) =*—2—(ﬂ—l_‘3[®(w+ 1)— 0w+ o)+ w— o) — O(w— p)],

where @(z) is the cumulative Gaussian distribution.
4. The Bayesian algorithm

From Bayes rule, we can compute the posterior probabilities

_ P(X= x)f wx(wlx)

P(X= x| W= w) 7 )

It computes in each site i the marginal probabilities by the Maximal marginal posterior rule:

X| W= w)=2x,P(X= x| W= w)

and if this probability is more than 0.5, the pixel gets value 1. Both decision rules have a
binary outcome: each coefficient is classified as noise (X=0) or relatively uncorrupted
(X=1).

The computation of P(X,=1 W) involves the probability of all possible configurations =x.

Mostly, the samples are generated, not independently of each other, but in a chain, hence it is
named as Markov Chain Monte Carlo(MCMC) estimation. Suppose we want a sample from

the distribution with joint density P(x)= P(x;,-*,x»). An initial configuration, x(O), is

chosen. At each iteration, this configuration is updated at one point. The point to be updated
is selected at random. The updated value is based on its conditional probability given the
current value of all the other sites. These conditional probabilities are referred to as the full

conditionals. For example, if site 7 is chosen for updating at iteration ¢ its new value is a
sample from

P(xdx 7 =Pl ™ o i2) x5, v D
where x; refers to the configuration of all of the pixels except the i " They are independent

of the partition function and depend only on the current values of the nearest neighbors. In
the case the full conditionals are

B2 xx;
P( tJ t—l)___ e ;;"x

where 07 is the set of points that are neighbors of point ¢. Next we can compute the
probability ratio of two subsequent samples:
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w_ X" w

r ?
X" w
This is the only quantity needed by the algorithm, and if
1
X=x|W)=———exp[— Ux wixlWwlx
A | W) Zr(w) pl— Ux)] fu(wlx)

there is no need for the enormous computation of the partition function Z f,(w).

This is the classical Metropolis sampler(Metropolis et al(1953)). The chain of states is

e (0 . 0]
started from an initial state X . The successive samples X “ are then produced as

follows: a candidate intermediate state is generated by a local random perturbation of the
actual state. Then the probability ratio #» of the actual state and its perturbation is computed.
Since the Gibbs distribution is based on local potential functions, only positions 7 whose mask
labels are switched by the perturbation or which have a switched label in their neighborhood
di are involved in the computation. If the probability ratio is larger than one, then the new

state is accepted, otherwise it is accepted with probability equal to 7, ie. the acceptable

m, 1]. To generate a completely new sample, we repeat this local switch

for all locations in the grid.

probability is min[r»

5. The algorithm and its results
5.1 Algorithm summary

This is a schematic overview of the subsequent steps of the algorithm:

1. Compute the stationary wavelet transform W of the input.

2. At each level and for each component, select the appropriate threshold A=V 2log(size).

This threshold generates an initial label image X (0).

3. Estimate the parameters {s, p} and ¢ from the collection of input wavelet coefficients

{w,;}. A simple solution is a maximum likelihood estimator:

7 y _ max I ( -y, —(w=0'/2d
o-} l Pw(wl S, p, »0’) arg {s’ p’ 0,} Z- fe e dl)

4. Run a stochastic sampler to estimate for coefficient at the given resolution level the

probability P(X] W). Use X @ from the previous step as the starting sample. A

~ —~ A max
{s, p, 0}=arg (s

’

MCMC algorithm produces the sequence of samples.
5 W= W,P(X,|W)

6. Inverse wavelet transform yields the result.
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5.2 Results and discussion

In this sectin, we show examples of two empirical thresholding models for visual images.

These procedures are deigned for application in image noise reduction. Jansen and
Bultheel(1999) developed the Empirical Bayes Approach to improve the classical threshold
algorithm using local characterization in Markov random field. Even though the above method
has dealt with clustering of significant Wavelet coefficients, it was to consider the prior model
taking these line singularities into account, it didn’t take account of a realistic model.
We also developed wavelet thresholding algorithm using Laplacian distribution which is more
realistic model. This distribution has been developed as a marginal Statistical model for
Bayesian image restoration by Simoncelli(1999). We used this distribution for the wavelet
threshold to improve denoising.

Table 1 shows mismatching counts( = 2,K| Yi— Y{) difference) for all three algorithms,

applied to a 256X256 size woman picture. Laplace algorithm outperform the other two
techniques. Finally, figures 1. shows example images. Laplace model appear sharper and less
noisy than the other models.

difference noise hard threshold uniform Laplace

0.20 174 291 186 174
0.25 138 90 45 27

0.3-0.7 138 51 30 15
0.75 138 48 30 15
0.8 132 36 24 15
0.85 129 33 24 15
0.9 48 15 15 9
0.95 21 9 12 9

Table 1. Denoising results for three estimators, All values indicate mismatching
counts,
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Figure 1. Denoising results A: Original "Woman” image. B:
Noisy image(Gaussian noise). C: Hard threshold model. D:
Uniform distribution model. E: Laplace distribution model.



