• Title/Summary/Keyword: Market Forecasting

Search Result 465, Processing Time 0.029 seconds

Load Forecasting for Holidays Using a Fuzzy Least Squares Linear Regression Algorithm (퍼지 최소 자승 선형회귀분석 알고리즘을 이용한 특수일 전력수요예측)

  • Song Kyung-Bin;Ku Bon-Suk;Baek Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.233-237
    • /
    • 2003
  • An accurate load forecasting is essential for economics and stability power system operation. Due to high relationship between the electric power load and the electric power price, the participants of the competitive power market are very interested in load forecasting. The percentage errors of load forecasting for holidays is relatively large. In order to improve the accuarcy of load forecasting for holidays, this paper proposed load forecasting method for holidays using a fuzzy least squares linear regression algorithm. The proposed algorithm is tested for load forecasting for holidays in 1996, 1997, and 2000. The test results show that the proposed algorithm is better than the algorithm using fuzzy linear regression.

A Critical Review of Nurse Demand Forecasting Methods in Empirical Studies 1991~2014 (간호사 인력의 수요추계 방법론에 대한 비판적 검토: 1991~2014년간의 실증연구를 중심으로)

  • Jeong, Suyong;Kim, Jinhyun
    • Perspectives in Nursing Science
    • /
    • v.13 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: The aim of this study is to review the nurse demand forecasting methods in empirical studies published during 1991~2014 and suggest ideas to improve the validity in nurse demand forecasting. Methods: Previous studies on nurse demand forecasting methodology were categorized into four groups: time series analysis, top-down approach of workforce requirement, bottom-up approach of workforce requirement, and labor market analysis. Major methodological properties of each group were summarized and compared. Results: Time series analysis and top-down approach were the most frequently used forecasting methodologies. Conclusion: To improve decision-making in nursing workforce planning, stakeholders should consider a variety of demand forecasting methods and appraise the validity of forecasting nurse demand.

Forecasting Short-term Electricity Prices in South Korean Electricity Market (한국전력시장에서의 단기전력가격 예측)

  • Chae, Yeoung-Jin;Kim, Doo-Jung;Kim, Eun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.83-85
    • /
    • 2008
  • The authors develop and compare the performance of short-term forecasting models on electricity market prices in Korea. The models are based on time-series methods. The outcome shows that the EGARCH model has the best results in the out-of-sample forecasts.

  • PDF

A Method for Forecasting Demand of High Touch Product Using Matrix Analysis of Target Populations and Product Functions (Target Population과 Product Function의 Matrix 분석을 이용한 High Touch 신제품의 판매예측 방법)

  • Park, Won-Hui;Kim, Dae-Gap;Kim, Ki-Sun;Lee, Sang-Won;Lee, Myun-Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • Demand forecasting methods for a consumer product such as TV or refrigerator are widely known. However, sales forecast for a brand new product cannot be estimated using conventional forecasting methods. This study proposes a five-step procedure in forecasting a newly developed product. Step one defines functions in a High Touch product in order to estimate relative attraction of the product to consumer group. In step two, for a comparison purpose, a compatible product that is successfully penetrated into market is selected. Step three breaks a target population into many segments based on demography. Step four calculates relative attraction between the High Touch product and the compatible product. Finally, market penetration rate of the High Touch product is estimated using a bell-shaped diffusion curve of the compatible product. The process offers a method to estimate potential demand and growth pattern of the new High Touch product.

Price Monitoring Automation with Marketing Forecasting Methods

  • Oksana Penkova;Oleksandr Zakharchuk;Ivan Blahun;Alina Berher;Veronika Nechytailo;Andrii Kharenko
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.37-46
    • /
    • 2023
  • The main aim of the article is to solve the problem of automating price monitoring using marketing forecasting methods and Excel functionality under martial law. The study used the method of algorithms, trend analysis, correlation and regression analysis, ANOVA, extrapolation, index method, etc. The importance of monitoring consumer price developments in market pricing at the macro and micro levels is proved. The introduction of a Dummy variable to account for the influence of martial law in market pricing is proposed, both in linear multiple regression modelling and in forecasting the components of the Consumer Price Index. Experimentally, the high reliability of forecasting based on a five-factor linear regression model with a Dummy variable was proved in comparison with a linear trend equation and a four-factor linear regression model. Pessimistic, realistic and optimistic scenarios were developed for forecasting the Consumer Price Index for the situation of the end of the Russian-Ukrainian war until the end of 2023 and separately until the end of 2024.

A Study on the Asymmetric Volatility in the Korean Bond Market (채권시장 변동성의 비대칭적 반응에 관한 연구)

  • Kim, Hyun-Seok
    • Management & Information Systems Review
    • /
    • v.28 no.4
    • /
    • pp.93-108
    • /
    • 2009
  • This study examines the asymmetric volatility in the Korean bond market and stock market by using the KTB Prime Index and KOSPI. Because accurate estimation and forecasting of volatility is essential before investing assets, it is important to understand the asymmetric response of volatility in bond market. Therefore I investigate the existence of asymmetric volatility in Korean bond market unlike the previous studies which mainly focused on stock returns. The main results of the empirical analysis with GARCH and GJR-GARCH model are as follow. At first, it exists the asymmetric volatility on KOSPI returns like the previous studies. Also, I find that the GJR-GARCH is more suitable one than GARCH model for forecasting volatility. Second, it does not exist the asymmetric volatility on KTB Prime Index returns. This result is showed by that using the GARCH model for forecasting volatility in bond market is sufficient.

  • PDF

A SMP Forecasting Method Based on Artificial Neural Network Using Time and Day Information (시간축 및 요일축 정보의 조합을 이용한 신경회로망 기반의 평일 계통한계가격 예측)

  • Lee, Jeong-Kyu;Kim, Min-Soo;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.438-440
    • /
    • 2003
  • This paper resents an application of an Artificial Neural Network(ANN) technique to forecast the short-term system marginal price(SMP). The forecasting of SMP is a very important factor in an electricity market for the optimal biddings of market participants as well as for the market stabilization of regulatory bodies. The proposed neural network scheme is composed of three layers. In this process, input data are set up to reflect market conditions. And the $\lambda$ that is the coefficient of activation function is modified in order to give a proper signal to each neuron and improve the adaptability for a neural network. The reposed techniques are trained validated and tested with the historical real-world data from korea Power Exchange(KPX).

  • PDF

Forecasting Housing Demand with Big Data

  • Kim, Han Been;Kim, Seong Do;Song, Su Jin;Shin, Do Hyoung
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.44-48
    • /
    • 2015
  • Housing price is a key indicator of housing demand. Actual Transaction Price Index of Apartment (ATPIA) released by Korea Appraisal Board is useful to understand the current level of housing price, but it does not forecast future prices. Big data such as the frequency of internet search queries is more accessible and faster than ever. Forecasting future housing demand through big data will be very helpful in housing market. The objective of this study is to develop a forecasting model of ATPIA as a part of forecasting housing demand. For forecasting, a concept of time shift was applied in the model. As a result, the forecasting model with the time shift of 5 months shows the highest coefficient of determination, thus selected as the optimal model. The mean error rate is 2.95% which is a quite promising result.

  • PDF

A Forecasting on the Market Size of Korean Solar Salt (한국 식용 천일염 시장규모 전망에 관한 연구)

  • Choi, Byung-Ok;Kim, Bae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4812-4818
    • /
    • 2013
  • This paper contains material of the supply-demand forecasting of solar salt for food in Korea. The solar salt was granted admission for food by the act of salt management in 2007. So, the yearly statistics of solar salt for food are not enough to forecast the supply-demand unsing econometrics. However, the related industry become interested in market size of the solar salt for food and the growth potential of the market. This study deal with the supply-demand forecasting of solar salt for food in light of industry of solar salt, consumption trends, export-import quantity, etc. This research results indicate that the production quantity will be 222-384 thousand MT, the export quantity will be 498-565 thousand MT, the export quantity will be 2.67-3.62 thousand MT, the consumption quantity will be 767-996 thousand MT.

Forecasting Long-Memory Volatility of the Australian Futures Market (호주 선물시장의 장기기억 변동성 예측)

  • Kang, Sang Hoon;Yoon, Seong-Min
    • International Area Studies Review
    • /
    • v.14 no.2
    • /
    • pp.25-40
    • /
    • 2010
  • Accurate forecasting of volatility is of considerable interest in financial volatility research, particularly in regard to portfolio allocation, option pricing and risk management because volatility is equal to market risk. So, we attempted to delineate a model with good ability to forecast and identified stylized features of volatility, with a focus on volatility persistence or long memory in the Australian futures market. In this context, we assessed the long-memory property in the volatility of index futures contracts using three conditional volatility models, namely the GARCH, IGARCH and FIGARCH models. We found that the FIGARCH model better captures the long-memory property than do the GARCH and IGARCH models. Additionally, we found that the FIGARCH model provides superior performance in one-day-ahead volatility forecasts. As discussed in this paper, the FIGARCH model should prove a useful technique in forecasting the long-memory volatility in the Australian index futures market.