• Title/Summary/Keyword: Maritime Software

Search Result 266, Processing Time 0.023 seconds

Well Data Interpretation using Software Developed for Estimation of Petrophysical Properties in Gas Hydrate Bearing Sediments in Ulleung Basin, Offshore Korea (가스하이드레이트 퇴적층 물성 추정 소프트웨어를 이용한 울릉분지 시추공 자료 해석)

  • Seo, Kwang-Won;Lim, Jong-Se
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.55-67
    • /
    • 2012
  • For the development of gas hydrate as new future energy resources, the drilling was carried out at the five locations where have high potential as gas hydrate bearing sediments in Ulleung basin, offshore Korea in 2007. Well log data were obtained from all wells and core data were procured from 3 wells, UBGH1-04, UBGH1-09 and UBGH1-10. In this study, user-friendly software, "KMU GH Logs 2010", is developed and this software is based on the estimation methods developed in previous study for gas hydrate bearing sediments and the properties estimated from UBGH1-04, UBGH1-09 and UBGH1-10. Petrophysical properties in un-cored wells, UBGH1-01 and UBGH1-14, are also estimated by using well log data. Porosity is estimated by density log and gas hydrate saturation is calculated by sonic log and resistivity log. Sedimentary facies are estimated by applying the linear discriminant analysis using both well log and sedimentary facies data from core analysis. It is confirmed that DITM facies and MSS facies appeared signs of gas hydrate disassociation are able to be distinguished by the method.

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

A Study on 3D RTLS at Port Container Yards Using the Extended Kalman Filter

  • Kim, Joeng-Hoon;Lee, Hyun-Woo;Kwon, Soon-Ryang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.228-235
    • /
    • 2007
  • The main purpose of this paper is to manage the container property effectively at the container yard by applying the RTLS technology to the field of port logistics. Yet, many kinds of noises happen to be inputted with the distance value(between the reader and the tag) which is to be inputted into the location identification algorithm, which makes the distance value jumped due to the system noise of the ultrasonic sensor module and the measurement noise. The Kalman Filter is widely used to prevent this jump occurrence; the noises are eliminated by using the EKF(Extended Kalman Filter) while considering that the distance information of the ultrasonic sensor is non-linear. Also, the 3D RTLS system at the port container yard suggested in this research is designed not to be interrupted for its ultrasonic transmission by positioning the antenna at the front of each sector of the container where the active tags are installed. We positioned the readers, which function as antennas for location identification, to four places randomly in the absolute coordinate and let the positions of the active tags identified by using the distance data delivered from the active tags. For the location identification algorithm used in this paper, the triangulation measurement that is most used in general is applied and newly reorganized to calculate the position of the container. In the first experiment, we dealt with the error resulting in the angle and the distance of the ultrasonic sensor module, which is the most important in the hardware performance; in the second, we evaluated the performance of the location identification algorithm, which is the most important in the software performance, and tested the noise cancellation effects for the EKF. According to the experiment result, the ultrasonic sensor showed an average of 3 to 5cm error up to $45^{\circ}$ in case of $60^{\circ}$ or more, non-reliable linear distances were obtained. In addition, the evaluation of the algorithm performance showed an average of $4^{\circ}{\sim}5^{\circ}$ error due to the error of the linear distance-this error is negligible for most container location identifications. Lastly, the experiment results of noise cancellation and jump preservation by using the EKF showed that noises were removed in the distance information which was entered from the input of the ultrasonic sensor and as a result, only signal was extracted; thus, jumps were able to be removed and the exact distance information between the ultrasonic sensors could be obtained.

A Study on Simulation based Manufacturing in Shipyards : Focused on a Long-term Plan Verification (조선소에서의 시뮬레이션 기반 생산에 관한 연구 : 선표 계획 검증을 중심으로)

  • Lee, Dong-Kun;Oh, Dae-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.86-95
    • /
    • 2014
  • Productivity improvement of a shipbuilding company depends on how efficiently its limited resources are managed and utilized. Recently, research on modeling and simulation (M&S) to support shipyard production management system has been being under study. The production management based on M&S rejects decision making on experience, and it can establish productivity improvement method based on quantitative and specific data. In this paper, M&S is applied to the long-term plan as a part of the production planning in shipyards. To this end, the long-term plan processes and related management systems are analyzed. Based on the analysis, a simulation model and an application system using commercial simulation software are suggested. And basic structure of the suggested system is based on web technology such as Rich Internet Application, web services protocol for compatibility with existing shipyard enterprise systems. Utilizing the results of this study, it is expected that shipyard production planners can settle down work flow, in which one can establishes the production plan, simulates the plan, and analyzes the results, enabling a more reliable production plans.

Design and Implementation of Feature Catalogue Builder based on the S-100 Standard (S-100 표준 기반 피처 카탈로그 제작지원 시스템의 설계 및 구현)

  • Park, Daewon;Kwon, Hyuk-Chul;Park, Suhyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.571-578
    • /
    • 2013
  • The IHO S-100 is a standard on the universal hydorgraphic data model for supporting information services that integrate various data in maritime and provide proper information for safety of vessels. The S-100 is used to develop S-10x product specifications which are standards on guideline for creation and delivery of specific data set in maritime. The product specification for feature-based data such as ENC(Electronic Navigational Chart) data includes a feature catalogue that describes characteristics of features in that feature-based data. The feature catalogue is developed by domain experts with knowledge on data of the target domain. However, it is not feasible to develop a feature catalogue according to the XML schema by manual. In the IHO TSMAD committee meeting, needs of developing technology on building feature catalogue has been discussed. Therefore, we present a feature catalogue builder that is a GUI(Graphic User Interface) system supporting domain experts to build feature catalogues in XML. The feature catalogue builder is developed to connect with the FCD(Feature Concept Dictionary) register in the IHO(International Hydrographic Organization) GI(Geographic Information) registry. Also, it supports domain experts to select proper feature items based on the relationships between register items.

Interactive Navigational Structures

  • Czaplewski, Krzysztof;Wisniewski, Zbigniew
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.495-500
    • /
    • 2006
  • Satellite systems for objects positioning appeared indispensable for performing basic tasks of maritime navigation. Navigation, understood as safe and effective conducting a vehicle from one point to another, within a specific physical-geographical environment. [Kopacz, $Urba{\acute{n}}ski$, 1998]. However, the systems have not solved the problem of accessibility to reliable and highly accurate information about a position of an object, especially if surveyed toward on-shore navigational signs or in sea depth. And it's of considerable significance for many navigational tasks, carried out within the frameworks of special works performance and submarine navigation. In addition, positioning precisely the objects other than vessels, while executing hydrographical works, is not always possible with a use of any satellite system. Difficulties with GPS application show up also while positioning such off-lying dangers as wrecks, underwater and aquatic rocks also other naturaland artificial obstacles. It is caused by impossibility of surveyors approaching directly any such object while its positioning. Moreover, determination of vessels positions mutually (mutual geometrical relations) by teams carrying out one common tasks at sea, demands applying the navigational techniques other than the satellite ones. Vessels'staying precisely on specified positions is of special importance in, among the others, the cases as follows: - surveying vessels while carrying out bathymetric works, wire dragging; - special tasks watercraft in course of carrying out scientific research, sea bottom exploration etc. The problems are essential for maritime economy and the Country defence readiness. Resolving them requires applying not only the satellite navigation methods, but also the terrestrial ones. The condition for implementation of the geo-navigation methods is at present the methods development both: in aspects of their techniques and technologies as well as survey data evaluation. Now, the classical geo-navigation comprises procedures, which meet out-of-date accuracy standards. To enable meeting the present-day requirements, the methods should refer to well-recognised and still developed methods of contemporary geodesy. Moreover, in a time of computerization and automation of calculating, it is feasible to create also such software, which could be applied in the integrated navigational systems, allowing carrying out navigation, provided with combinatory systems as well as with the new positioning methods. Whereas, as regards data evaluation, there should be applied the most advanced achievements in that subject; first of all the newest, although theoretically well-recognised estimation methods, including estimation [Hampel et al. 1986; $Wi{\acute{s}}niewski$ 2005; Yang 1997; Yang et al. 1999]. Such approach to the problem consisting in positioning a vehicle in motion and solid objects under observation enables an opportunity of creating dynamic and interactive navigational structures. The main subject of the theoretical suggested in this paper is the Interactive Navigational Structure. In this paper, the Structure will stand for the existing navigational signs systems, any observed solid objects and also vehicles, carrying out navigation (submarines inclusive), which, owing to mutual dependencies, (geometrical and physical) allow to determine coordinates of this new Structure's elements and to correct the already known coordinates of other elements.

  • PDF

Development of an Automated Design Algorithm for the Longitudinal Members of Oil Tankers based on H-CSR (H-CSR 기반 유조선 종강도 부재의 설계 자동화 알고리즘 개발)

  • Park, Chan-im;Jeong, Sol;Song, Ha-cheol;Na, Seung-soo;Park, Min-cheol;Shin, Sang-hoon;Lee, Jeong-youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.503-513
    • /
    • 2016
  • In order to reduce the green-house gas exhaustion, International Maritime Organization (IMO) has been reinforcing carbon gas regulations. Due to the regulations, a lot of competitions for designing Eco ship in the shipbuilding industry are progressing now. It is faced with the necessity of reducing hull weight by combining automated systems for optimal compartment arrangement with hull structural design. Most researches on optimum structural design method have been consistently in progress and applied to minimize weight and cost of mid-ship section in preliminary ship design stage based on analytical structural analysis method on fixed compartment arrangement. In order to reduce design period and to improve international technical competitiveness by shortening the period of hull structural design and enhancing design accuracy, it has been felt necessity to combine optimized compartment arrangement with optimum design of ship structure based on the international regulations and rules. So in this study, the automated design algorithm for longitudinal members has been developed to combine automated algorithm of compartment arrangement with hull structural design system for oil tanker. The SeaTrust-Hullscan software developed by Korean Register is used to perform ship structural design for mother ship and selected design cases. The effect of weight reduction is verified with comparison of ship weight between mother ship and the cases suggested in this study.

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation (누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.