• Title/Summary/Keyword: Marine Microorganism

Search Result 102, Processing Time 0.035 seconds

Isolation and Characterization of a New Cellulase-producing Marine Bacterium, Seonamhaeicola sp. S2-3 (셀룰로스분해 신규 해양미생물 Seonamhaeicola sp. S2-3의 분리 및 동정)

  • Kim, Da Som;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.539-546
    • /
    • 2020
  • A cellulolytic bacterial strain, S2-3, was isolated from sea water collected in Jeju island, Republic of Korea. The strain was aerobic and gram negative, and formed yellow colored colonies on marine agar medium. S2-3 cells were long rod-shaped, 0.5 × 0.25 ㎛ (width x length) in size, and did not have flagella. The optimal growth conditions for S2-3 were 30-35℃ and pH 6.5-7.0. Analysis of the 16S rRNA gene sequence of S2-3 revealed that it had the highest identity with those of Seonamhaeicola algicola Gy8 (97.08%), Hyunsoonleella udonensis JG48 (95.01%), and Aestuariibaculum scopimerae I-15 (94.86%). In phylogenetic analysis, S2-3 formed the same clade as S. algicola Gy8, implying that S2-3 belongs to the genus Seonamhaeicola. The major fatty acids (>10%) comprised C15:1 iso G (22.29%), C15:0 iso (17.71%), C17:0 iso 3OH (16.06%), and C15:0 iso 3OH (10.7%), resulting in quite different ratio of the component from those of S. algicola Gy8. Moreover, its biochemical characteristics, including acid production and enzyme activities, were different from those of S. algicola Gy8. Therefore, putting all these results together, we concluded S2-3 is distinct species from S. algicola Gy8, and thus named it Seonamhaeicola sp. S2-3. In liquid culture, S2-3 produced extracellular cellulases that can hydrolyze cellulose or cellooligosaccharides into cellobiose, which is a good enzyme resource that deserves further research.

A Cold-Adapted Epoxide Hydrolase from a Strict Marine Bacterium, Sphingophyxis alaskensis

  • Kang, Ji-Hyun;Woo, Jung-Hee;Kang, Sung-Gyun;Hwang, Young-Ok;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1445-1452
    • /
    • 2008
  • An open reading frame (ORF) encoding a putative epoxide hydrolase (EHase) was identified by analyzing the genome sequence of Sphingophyxis alaskensis. The EHase gene (seh) was cloned and expressed in E. coli. To facilitate purification, the gene was fused in-frame to 6$\times$ histidine at the C-terminus. The recombinant EHase (rSEH) was highly soluble and could be purified to apparent homogeneity by one step of metal affinity chromatography. The purified SEH displayed hydrolyzing activities toward various epoxides such as styrene oxide, glycidyl phenyl ether, epoxyhexane, epoxybutane, epichlorohydrin, and epifluorohydrin. The optimum activity toward styrene oxide was observed at pH 6.5 and $35^{\circ}C$. The purified SEH showed a cold-adapted property, displaying more than 40% of activity at low temperature of $10^{\circ}C$ compared with the optimum activity. Despite the catalytic efficiency, the purified SEH did not hydrolyze various epoxides enantioselectively. $K_m$ and $k_{cat}$ of SEH toward (R)-styrene oxide were calculated as 4$\pm$0.3 mM and 7.42$s^{-1}$ respectively, whereas $K_m$ and $k_{cat}$ of SEH toward (S)-styrene oxide were 5.25$\pm$0.3 mM and 10.08$s^{-1}$ respectively.

Evaluation of Petroleum Oil Degrading Mixed Microorganism Agent for the Bioremediation of Petroleum Oil Spilled in Marine Environments (해양유류오염정화를 위한 유류분해 미생물제제의 평가)

  • Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1599-1606
    • /
    • 2011
  • To evaluate the effects of microorganism agents on oil biodegradation, treatability and microcosm studies were conducted. Petroleum oil degrading bacteria were isolated from enriched cultures of oil-contaminated sediment samples using a mineral salts medium (MSM) containing 0.5% Arabian heavy crude oil as the sole carbon source. After a 5 day-incubation period using MSM, mixed microorganisms of three species (strains BS1, BS2 and BS4) degraded 48.4% of aliphatic hydrocarbons and 30.5% of aromatic hydrocarbons. Treatability and microcosm tests were performed in the three different treatment conditions (AO: Arabian heavy crude oil, AO+IN: Arabian heavy crude oil+inorganic nutrient, AO+IN+MM: Arabian heavy crude oil+inorganic nutrient+mixed microorganism agents). Among these, significantly enhanced biodegradation of aliphatic hydrocarbons were observed in AO+IN and AO+IN+MM conditions, without showing any different biodegradation rates in either condition. However, the degradation rates of aromatic hydrocarbons in an AO+IN+MM condition were increased by 50% in the treatability test and by 13% in the microcosm test compared to those in an AO+IN condition. Taken together, it can be concluded that mixed microorganism agents enhance the biodegradation of aliphatic and aromatic hydrocarbons in laboratory, a treatability test, and a microcosm test. This agent could especially be a useful tool in the application of bioremediation for removal of aromatic hydrocarbons.

Biodegradation of Diesel by Rhodococcus fascians in Sand Column (Rhodococcus fascians를 이용한 모래 컬럼내 디젤유 분해)

  • Moon, Jun-Hyung;Koo, Ja-Ryong;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Contamination of soils, groundwater, air and marine environment with hazardous and toxic chemicals is major side effect by the industrialization. Bioremediation, the application of microorganism or microbial processes to degrade environmental contaminant, is one of the new environmental technologies. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The purpose of this study is biodegradation of diesel in sand by using Rhodococcus fascians, a microorganism isolated from petroleum contaminated soil. This study was performed in the column containing sand obtained from sea sides. Changes in biodegradability of diesel with various flow rates, inoculum sizes, diesel concentrations, and pH were investigated in sand column. The optimal condition for biodegradation of diesel by R. fascians in sand column system was initial pH 8 and air flow rate of 30 mL/min. Higher diesel degradation was achieved at larger inoculum size and the diesel degradation by R. fascians was not inhibited by diesel concentration up to 5%.

Chemical Properties of Sediment in Nanakita Estuarine Tidal Flat: Estimation of Sedimentary Organic Matter Origin by Stable Isotope and Fatty Acid

  • Shin, Woo-Seok;Aikawa, Yoshio;Nishimura, Osamu
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • The spatial variation of organic matter sources in tidal flat sediment of the Nanakita River estuary, involving Gamo lagoon on the north-east coast of Honshu Island, Japan, was examined using carbon stable isotopes and fatty acid biomarkers. The spatial variation of total organic carbon (TOC) contents and ${\delta}^{13}C$ values were highly variable in between the stations, such as sandy flat (1.3 mg/g, -21.0‰), sand-muddy flat (2.6 mg/g, -21.9‰), and muddy flat (24.9 mg/g, -25.9‰), respectively. Particularly, at the muddy flat, high TOC content and low ${\delta}^{13}C$ value of the sediments indicated that the surface sediment was composed largely of terrestrial organic matter. Whereas, at the sandy flat and sand-muddy flat, the high ratios of diatom and bacteria biomarkers indicated the high contribution of abundant microorganism along with marine organic matter in sediment composition. From these results, it considered that the amount and origin of transported sedimentary organic matter indicated different characteristics in this study stations.

Assessment of Microorganism-derived Adjuvants for Scuticociliate Miamiensis avidus Vaccine (스쿠티카충Miamiensis avidus 주사백신용 미생물유래 면역보조제의 평가)

  • Jung, Myung-Hwa;Jung, Sung-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.652-659
    • /
    • 2021
  • Microorganism-derived compounds, such as peptidoglycan, lipoteichoic acid, and β-glucan were supplemented in the scuticociliate Miamiensis avidus (M. avidus) vaccine to verify the specify component contribution to the adjuvant effect. Vaccine was formulated with the inactivated M. avidus antigen (YS2, 4.44×105 cells/fish) in combination with either peptidoglycan (10 ㎍ and 100 ㎍/fish), lipoteichoic acid (5 ㎍ and 50 ㎍/fish), or β-glucan (10 ㎍ and 100 ㎍/fish). Olive flounder injected with peptidoglycan supplemented vaccine (10 ㎍ and 100 ㎍/fish) exhibited significant protection, and the relative percent survival (RPS) was 55% and 65% at 4 weeks post vaccination (wpv), respectively, at the corresponding doses. The vaccine groups with added lipoteichoic acid (5 ㎍ and 50 ㎍/fish) exhibited RPS of 40% and 5%, respectively. Additionally, the group with added β-glucan (100 ㎍/fish) exhibited RPS of 35%, but no effect was observed in the group with added 10 ㎍/fish β-glucan. At 8 wpv, olive flounder injected with peptidoglycan and lipoteichoic acid supplemented vaccines exhibited protection with RPS range of 11/11% and 5/21%, respectively, at the respective doses. M. avidus vaccine containing 10 ㎍ and 100 ㎍/fish of β-glucan exhibited the RPS of 32% and 37%, respectively. Conclusively, peptidoglycan contributed in high protection of the M. avidus vaccine, and thus, it can be used as an effective adjuvant in the M. avidus vaccine.

Screening on Receptor Tyrosine Kinase Inhibitory Activity of Marine Algae-Derived Symbiotic Microorganisms (해조류 공생미생물의 Receptor Tyrosine Kinase 억제효능 검색)

  • Yun, Keum-Ja;Yang, Guohua;Feng, Zhile;Nenkep, Viviane N.;Xavier, Siwe-Noundou;Leutou, Alain S.;Kim, Gun-Do;Cho, Hee-Yeong;Choi, Hong-Dae;Son, Byeng-Wha
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.1
    • /
    • pp.43-47
    • /
    • 2010
  • In order to screen new receptor tyrosine kinase inhibitor which is expected to be anticancer drug lead, we have investigated receptor tyrosine kinase inhibitory activity on the marine alga-derived symbiotic microorganisms (500 strains). The significant activities (over 70% inhibition at $10\;{\mu}g/ml$) were observed in the extracts of ten strains (Strain No.: MFA018, 019, 206, 242, 325, 335, 343, 344, 354, 356), isolated from marine red algae, five strains (Strain No.: MFA030, 126, 213, 324, 339), isolated from the brown algae, and one strain (Strain No.: MFA272), isolated from the marine green algae, respectively. Among the active strains, MFA019 and 356 showed strong receptor tyrosine kinase inhibitory activity with $IC_{50}$ values of 0.6 and $0.9\;{\mu}g/ml$, respectively.

Characterization of Acidic Carboxymethylcellulase Produced by a Marine Microorganism, Psychrobacter aquimaris LBH-10 (해양미생물 Psychrobacter aquimaris LBH-10가 생산하는 산성 carboxymethylcellulase의 특성에 대한 연구)

  • Kim, Hye-Jin;Gao, Wa;Lee, You-Jung;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.487-495
    • /
    • 2010
  • A microorganism hydrolyzing carboxymethylcellulose (CMC) was isolated from seawater, identified as Psychrobacter aquimaris by analysis of 16S rDNA sequences, and named P. aquimari LBH-10. This strain produced an acidic carboxymethylcellulase (CMCase), which hydrolyzed carboxymethylcellulose (CMC), cellobiose, curdlan, filter paper, p-nitrophenyl-$\beta$-D-glucopyranoside (pNPG), pullulan, and xylan, but there was no detectable activity on avicel and cellulose. The optimal temperature for CMCase produced by P. aquimari LBH-10 was $50^{\circ}C$ and more than 90% of its original activity was maintained at broad temperatures ranging from 20 to $50^{\circ}C$ after 24 hr. The optimal pH of the CMCase was 3.5, and more than 70% of its original activity was maintained under acidic conditions between pH 2.5 and 7.0 at $50^{\circ}C$ after 24 hr. The optimal pH of CMCase produced by P. aquimaris LBH-10 seems to be lower than those produced by any other bacterial and fungal strain. $CoCl_2$, EDTA, and $PbCl_2$ at a concentration of 0.1 M enhanced CMCase-produced P. aquimaris LBH-10, whereas $HgCl_2$, KCl, $MnCl_2$, $NiCl_2$, and $SrCl_2$ inhibited it.

Characterization and Organic Hydrocarbons Degradation Potential of Euryhaline Marine Microorganism, Bacillus sp. EBW4 Isolated from Polychaete (Perinereis aibuhitensis) (갯지렁이(Perinereis aibuhitensis)에서 분리한 광염성 해양 미생물 Bacillus sp. EBW4의 특성 및 유기물 분해능 분석)

  • Shin, Seyeon;Yundendorj, Khorloo;Lee, Sang-Suk;Lee, Dong-Heon;Kang, Kyoung-Ho;Kahng, Hyung-Yeel
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.38-45
    • /
    • 2013
  • In this study, euryhaline marine microorganism, Bacillus sp. strain EBW4 isolated from polychaete (Perinereis aibuhitensis) of Suncheon Bay was physiologically, biochemically and genetically characterized. Based on 16S rRNA sequence, EBW14 was found to share 98.25% similarity with Bacillus hemicentroti $JSM076093^T$, 97.96% similarity with Bacillus hwajinponensis SW-$72^T$ and 96.28% similarity with B. algicoa $KMM3737^T$, respectively. The temperature range for the growth of strain EBW4 was $4-40^{\circ}C$, NaCl concentration range 0-17% and pH range pH 5-9, revealing that EBW4 was euryhaline bacterium. Major fatty acids in strain EBW4 were composed of anteiso $C_{15:0}$ (48.2%), iso $C_{16:0}$ (12.1%), anteiso $C_{17:0}$ (11.6%) and iso $C_{14:0}$ (9.4%). EBW4 was found to have DNase, amylase, protease and lipase for the degradation of macromolecules such as DNA, carbohydrates, proteins, lipids, etc. The enzyme activities of alkaline phosphatase, esterase (C4), leucine arylamidase and ${\alpha}$-chymotrypsin were also found in strain EBW4. Analysis of the biodegradation ability of EBW4 for organic hydrocarbons under different salinity conditions using synthetic water waste revealed that EBW4 exhibited the ability to degrade organic hydrocarbons very quickly, suggesting strain EBW4 may be a good candidate for the application to various industries.

Purification and Biochemical Characterization of β-agarase Produced by Marine Microorganism Cellulophga sp. J9-3 (해양미생물 Cellulophga sp. J9-3이 생산하는 베타-아가레이즈의 분리 및 생화학적 특성)

  • Kim, Da Som;Kim, Jong-Hee;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.329-336
    • /
    • 2021
  • Cellulophga sp. J9-3, is a gram-negative, aerobic marine bacterium belonging to the family Flavobacteriaceae. In addition to cellulose degradability, the J9-3 strain is also capable of hydrolyzing agar in the solid and liquid medium, and the production of agarase in the presence of agarose can be remarkably induced by the bacterium. From the cell culture broth of Cellulophga sp. J9-3, ammonium sulfate precipitation and three kinds of column chromatography were successively performed to purify a specific agarase protein, the AgaJ93. Purified AgaJ93 showed the strongest hydrolyzing activity towards agarose (approximately 22%), and even displayed activity towards starch. AgaJ93 hydrolyzed agarose into neoagarotetraose and neoagarohexaose via various oligosaccharide intermediates, indicating that AgaJ93 is an endo-type β-agarase. AgaJ93 showed maximum activity at a pH of 7.0 and temperature of 35 ℃. Its activity increased by more than six times in the presence of Co2+ ions. The N-terminal sequence of AgaJ93 showed 82% homology with the heat-resistant endo-type β-agarase Aga2 of Cellulophaga sp. W5C. However, the biochemical properties of the two enzymes were different. Therefore, AgaJ93 is expected to be a novel agarose, different from the previously reported β-agarases.