Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.4.487

Characterization of Acidic Carboxymethylcellulase Produced by a Marine Microorganism, Psychrobacter aquimaris LBH-10  

Kim, Hye-Jin (Department of Medical Bioscience, Graduate School of Donga-A University)
Gao, Wa (Department of Medical Bioscience, Graduate School of Donga-A University)
Lee, You-Jung (Department of Medical Bioscience, Graduate School of Donga-A University)
Chung, Chung-Han (BK21 Bio-Silver Project of Dong-A University)
Lee, Jin-Woo (BK21 Bio-Silver Project of Dong-A University)
Publication Information
Journal of Life Science / v.20, no.4, 2010 , pp. 487-495 More about this Journal
Abstract
A microorganism hydrolyzing carboxymethylcellulose (CMC) was isolated from seawater, identified as Psychrobacter aquimaris by analysis of 16S rDNA sequences, and named P. aquimari LBH-10. This strain produced an acidic carboxymethylcellulase (CMCase), which hydrolyzed carboxymethylcellulose (CMC), cellobiose, curdlan, filter paper, p-nitrophenyl-$\beta$-D-glucopyranoside (pNPG), pullulan, and xylan, but there was no detectable activity on avicel and cellulose. The optimal temperature for CMCase produced by P. aquimari LBH-10 was $50^{\circ}C$ and more than 90% of its original activity was maintained at broad temperatures ranging from 20 to $50^{\circ}C$ after 24 hr. The optimal pH of the CMCase was 3.5, and more than 70% of its original activity was maintained under acidic conditions between pH 2.5 and 7.0 at $50^{\circ}C$ after 24 hr. The optimal pH of CMCase produced by P. aquimaris LBH-10 seems to be lower than those produced by any other bacterial and fungal strain. $CoCl_2$, EDTA, and $PbCl_2$ at a concentration of 0.1 M enhanced CMCase-produced P. aquimaris LBH-10, whereas $HgCl_2$, KCl, $MnCl_2$, $NiCl_2$, and $SrCl_2$ inhibited it.
Keywords
Carboxymethylcellulase; Psychrobacter aquimaris; marine microorganism; rice bran; acidophilic CMCase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Akiba, S., Y. Kimura, K. Yamamoto, and H. Kumagai. 1995. Purification and characterization of a-protease-resistant cellulose from Aspergillus niger. J. Ferment. Bioeng. 79, 125-130.   DOI
2 Azevedo, H., D. Bishop, and A. Cavaco-Paulo. 2000. Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulonwnas fimi). Enzyme Microb. Technol. 27, 325-329.   DOI
3 Woo, S. M. and S. D. Kim. 2007. Confirmation of non-side-rophore antifungal substance and cellulase from Bacillus lichenifarmis K11 containing antagonistic ability and plant growth promoting activity. J. Life Sci. 17, 983-989.   DOI
4 Yi, J. C., J. C. Sandra, A. B. John, and T. C. Shu. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and $\beta$-glucosidase components of fhe cellulolytic system of Valvariella valvacea, the edible straw mushroom. Appl. Environ. Microbial. 65, 553-559.
5 Murashima, K., T. Nishimura, Y. Nakamura, J. Koga. T. Moriya, N. Sumida, T. Yaguchi, and T. Kono. 2002. Purification and characterization of new endo-1,4-B-D-glucanases from Rhizopus oryzae. Enzyme Microb. Technol. 30, 319-326.   DOI
6 Mackenzie, L. F., G. Sulzenbacher, C. Divne, T. A. Jones, H. F. Woldike, M. Schulein, S. G. Withers, and G. J. Davies. 1998. Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2 A resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate. Biochem. J. 335, 409-416.
7 Maeadza, C., R. Hatti-Kaul, R Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-187.   DOI
8 Miller, G .. , L. Blum, R. Glennon, and A. L. Burton. 1960. surement of carboxymethylcellulase activity. Anal. Biochem. 2, 127-132.
9 Nandakumar, M. P., M. S. Thankur, K. S. M. S. Raghavarao, and N. P. Ghildyal. 1994. Mechanism of solid particle degradation by Aspergillus niger in solid state fermentation. Process Biochem. 29, 545-551.   DOI
10 Okolo, J. C., S. K. C. Obi, and F. J. C. Odibo. 1998. Purification and characterization of two distinct carboxymethylcellulases of Paecilomyces sp. Bioresource Technol. 66, 231-234.   DOI
11 Ito, S. 1997. Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles 1, 61-66.   DOI
12 Kim, B. K., B. H Lee, Y. J. Lee, I. H Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44, 411-416.   DOI
13 Kundu, R. K., S. Dube, and D. K. Dube. 1988. Extracellular cellulolytic enyzme system of Aspergillus japnicus: 3. isolation, purification, and characterization of multiple forms of endoglucanase. Enzyme Microb. Technol. 10, 100-109.   DOI
14 Zhang. Y. H. P. and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biatechnal. Biaeng. 88, 797-824.   DOI
15 Parra, L. P., F. Reyes, J. P. Acevedo, O. Salazar, B. A. Andrews, and J. A. Asenjo. 2008. Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enzyme Microb. Technol. 42, 371-377.   DOI
16 Resmussnen, R S. and M. T. Morrissey. 2007. Marine biotechnology for production of food ingredients. Adv. Food Nut. Res. 52, 237-292.   DOI
17 Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active estrase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly$\rightarrow$Pro substitution near the active site on its catalytic activity and stability. Biochem. Biophy. Acta 1696, 59-65.   DOI   ScienceOn
18 Kumar, S., K. Tamura, and N. Nei. 1993. MEGA: Molecular evolutionary genetic analysis. Version 1.01. The Pennsylvania State University. University Park, USA.
19 Lamed, R., J. Tormo, A. J. hirino, E. Morag, and E. A. Bayer. 1994. Crystallization and preliminary X-ray analysis of the major cellulose-binding domain of the cellulase from Clostridiumthermo eellum. J. Mol. Bioi. 244, 236-237.   DOI   ScienceOn
20 Lee, B. H, B. K. Kim, Y. J. Lee, C. H Chung, and J. W. Lee. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 46, 38-42.   DOI
21 Lee, S. M. and Y. M. Koo. 2001. Pilot-scale production of cellulose using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbial. Biotechnol. 11, 229-233.
22 Back, S. C. and Y. J. Kwon. 2007. Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol. Bioprocess Eng. 12, 404-409.   DOI
23 Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros. 2009. Ethanol from ligoncelulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Process Biochem. 39, 1843-1848.   DOI
24 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI
25 Roboson, L. M. and G. H Chambliss. 1989. Celluases of bacterial origin. Enzyme Microb. Technol. 11, 626-644.   DOI
26 Seo, H. P., C. W. Son, C. H Chung, D. I. Jung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2004. Production of high molecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source. Bioresource Technol. 95, 293-299.   DOI
27 Takagi, M., S. Abe, S. Suzuki, G. H Emert, and N. Yata. 1977. A method for production of ethanol directly from cellulose using cellulase and yeast, pp. 551-571, In Ghose, T. K. (ed.), Proceedings of Bioconversion Symposium, Delhi, India.
28 Thongekkaew, J., H. Ikeda, K. Masaki, and H. Iefuji. 2008. An acidic and fhermostable carboxymethylcellulase from fhe yeast Cryptacaccussp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichi a pastaris. Protein Expres. Purif. 60, 140-146.   DOI   ScienceOn
29 Weisburg. W. G., S. M. Barns, D. A. Pelletire, and D. J. Lane. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacterial. 173, 697-703.
30 Lee, Y. J., B. K. Kim, B. H Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresource Technol. 99, 378-386.   DOI
31 Liu, J. and W. Xia. 2006. Purification and characterization of a bifunctional enzyme with chotisanase and cellulose activity from commercial cellulose. Biochem. Eng J. 30, 82-87.   DOI
32 Delmer, D. P. and C. H Haigler. 2002. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metabol. Eng. 4, 22-28.   DOI
33 Boyer, M. H, J. P. Chambost, M. Magnan, and J. Cattaneo. 1984. Carboxymethyl-cellulase from Erwinia chrysanthermi. II. purification and partial characterization of an endo-B-1,4-glucanase. J. Biotechnol. 1, 241-252.   DOI
34 Cavaco-Paulo, A. 1998. Mechanism of cellulase action in textile processes. Carbohydr. Polymers 37, 273-277.   DOI
35 Chun, J. 1995. Computer-assisted classification and identification of actinomycestes. Ph. D. Thesis, University of Newcastle, Newcastle upon Tyne, UK.
36 Emtiazi, G. and I. Nahvi. 2000. Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37.   DOI
37 Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59, 257-268.   DOI
38 Golias, H., G. J. Dumsday, G. A. Stanley, and N. B. Pamment. 2000. Characteristics of cellulase preparation affecting the simultaneous saccharification and fermentation of cellulose to ethanol. Biotechnol. Lett. 26, 617-621.
39 Howard, R. L., E. Abotsi, E. L. J. von Rensburg, and S. Howard. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2, 602-619.