DOI QR코드

DOI QR Code

Isolation and Characterization of a New Cellulase-producing Marine Bacterium, Seonamhaeicola sp. S2-3

셀룰로스분해 신규 해양미생물 Seonamhaeicola sp. S2-3의 분리 및 동정

  • Kim, Da Som (Microorganism Resources Division, Biological Resources Research Department, National Institute of Biological Resource) ;
  • Chi, Won-Jae (Microorganism Resources Division, Biological Resources Research Department, National Institute of Biological Resource)
  • 김다솜 (국립생물자원관 생물자원연구부 미생물자원과) ;
  • 지원재 (국립생물자원관 생물자원연구부 미생물자원과)
  • Received : 2020.09.11
  • Accepted : 2020.10.23
  • Published : 2020.12.28

Abstract

A cellulolytic bacterial strain, S2-3, was isolated from sea water collected in Jeju island, Republic of Korea. The strain was aerobic and gram negative, and formed yellow colored colonies on marine agar medium. S2-3 cells were long rod-shaped, 0.5 × 0.25 ㎛ (width x length) in size, and did not have flagella. The optimal growth conditions for S2-3 were 30-35℃ and pH 6.5-7.0. Analysis of the 16S rRNA gene sequence of S2-3 revealed that it had the highest identity with those of Seonamhaeicola algicola Gy8 (97.08%), Hyunsoonleella udonensis JG48 (95.01%), and Aestuariibaculum scopimerae I-15 (94.86%). In phylogenetic analysis, S2-3 formed the same clade as S. algicola Gy8, implying that S2-3 belongs to the genus Seonamhaeicola. The major fatty acids (>10%) comprised C15:1 iso G (22.29%), C15:0 iso (17.71%), C17:0 iso 3OH (16.06%), and C15:0 iso 3OH (10.7%), resulting in quite different ratio of the component from those of S. algicola Gy8. Moreover, its biochemical characteristics, including acid production and enzyme activities, were different from those of S. algicola Gy8. Therefore, putting all these results together, we concluded S2-3 is distinct species from S. algicola Gy8, and thus named it Seonamhaeicola sp. S2-3. In liquid culture, S2-3 produced extracellular cellulases that can hydrolyze cellulose or cellooligosaccharides into cellobiose, which is a good enzyme resource that deserves further research.

Keywords

References

  1. Beguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  2. Carpita NC. 1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 445-476. https://doi.org/10.1146/annurev.arplant.47.1.445
  3. Warren RA. 1996. Microbial hydrolysis of polysaccharides. Annu. Rev. Microbiol. 50: 183-212. https://doi.org/10.1146/annurev.micro.50.1.183
  4. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, et al. 2011. Lignin content in natural Populus variants affects sugar release. Proc. Natl. Acad. Sci. USA 108: 6300-6305. https://doi.org/10.1073/pnas.1009252108
  5. Si S, Chem Y, Fan C, Hu H, Li Y, Huang J, et al. 2015. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour. Technol. 183: 248-254. https://doi.org/10.1016/j.biortech.2015.02.031
  6. Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC. 2015. Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol. Biofuels 8: 1-16. https://doi.org/10.1186/s13068-014-0179-6
  7. Patyshakuliyeva A, Falkoski DL, Wiebenga A, Timmermans K, Vries RP. 2019. Macroalgae derived fungi have high abilities to degrade algal polymers. Microorganisms 8: 52. https://doi.org/10.3390/microorganisms8010052
  8. Bhat MK. 2000. Cellulases and related enzymes in biotechnology. Adv. Biotechnol. 1: 355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
  9. Biely PJ, Schneider H. 1985. Acetyl xylan esterases in fungal cellulolytic systems. FEBS Lett. 186: 80-84. https://doi.org/10.1016/0014-5793(85)81343-0
  10. Yin LJ, Huang PS, Lin HH. 2010. Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5. J. Agric. Food Chem. 58: 9833-9837. https://doi.org/10.1021/jf1019104
  11. Fan C, Li S, Li C, Ma S, Zou L, Wu Q. 2012. Isolation, identification and cellulase production of a cellulolytic bacterium from intestines of giant panda. Wei Sheng Wu Xue Bao 52: 1113-1121.
  12. Gaur R, Tiwari S. 2015. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 15: 19. https://doi.org/10.1186/s12896-015-0129-9
  13. Kim DS, Chi WJ, Hong SK. 2019. Molecular characterization of an endo-β-1,4-glucanase, CelAJ93, from the recently isolated marine bacterium, Cellulophaga sp. J9-3. Appl. Sci. 9: 4061-4073. https://doi.org/10.3390/app9194061
  14. Dos Santos YQ, de Veras BO, de Franca AFJ, Gorlach-Lira K, Velasques J, Migliolo L, et al. 2018. A new salt-tolerant thermostable cellulase from a marine Bacillus sp. Strain. J. Microbiol. Biotechnol. 28: 1078-1085. https://doi.org/10.4014/jmb.1802.02037
  15. Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555. https://doi.org/10.1016/j.mimet.2003.08.009
  16. Galkiewicz JP, Kellogg CA. 2008. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl. Environ. Microbiol. 74: 7828-7831. https://doi.org/10.1128/AEM.01303-08
  17. Chun J, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, et al. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  18. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  19. Miller L, Berger T. 1985. Bacterial identification by gas chromatography of whole cell fatty acids. Hewlett-Packard Application note pp. 228-241. Hewlett-Packard Co, Avondale, Pa.
  20. Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. pp. 1-7. Newark, DE:MIDI Inc.
  21. Minikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241. https://doi.org/10.1016/0167-7012(84)90018-6
  22. Zhang Z, Chen Y, Wang R, Cai R, Fu Y, Jiao N. 2015. The fate of marine bacterial exopolysaccharide in natural marine microbial communities. PLoS One 10: e0142690. https://doi.org/10.1371/journal.pone.0142690
  23. Park S, Won SM, Park DS, Yoon JH. 2014. Seonamhaeicola aphaedonensis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a tidal flat sediment. Int. J. Syst. Evol. Microbiol. 64: 1867-1881.
  24. Zhou YX, Du ZJ, Chen GJ. 2016. Seonamhaeicola algicola sp. nov., a complex polysaccharide-degrading bacterium isolated from Gracilaria blodgettii, and emended description of the genus Seonamhaeicola. Int. J. Syst. Microbiol. 66: 2064-2068. https://doi.org/10.1099/ijsem.0.000991