• Title/Summary/Keyword: Marine Concrete

Search Result 408, Processing Time 0.022 seconds

Electrochemical Characteristics of Zn-mesh Cathodic Protection Systems in Concrete in Natural Seawater at Elevated Temperature

  • Kim, Ki-Joon;Jung, Jin-A;Lee, Woo-Cheol;Jang, Tae-Seub
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.269-274
    • /
    • 2007
  • The corrosion of steel in concrete is significant in marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood so far. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100 cm column specimens with eight of 10 cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both $10^{\circ}C$ and $40^{\circ}C$ in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode.

Time-dependent characteristics of chloride diffusion coefficient of concrete (콘크리트 염소이온 확산계수의 시간 의존적 특성)

  • Choi, Sung;Lee, Kwang-Myong;Shin, Kyung-Joon;Bae, Su-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.545-548
    • /
    • 2008
  • As the corrosion of reinforcing bar in concrete structures exposed to chloride attack is one of main factors to determine the remaining service life, marine concrete structures have to be designed to protect the chloride penetration. Among the durability design methods such as deterministic method and probabilistic method, design method based on the probabilistic theory has been widely studied. However, the most essential material, data of the material properties related to chloride diffusion, are still insufficient. In this paper, the probabilistic distribution of chloride diffusion coefficients and aging coefficients are derived by the experiment and analysis for the chloride coefficients of concrete containing pozzolans, which are generally used in marine structures.

  • PDF

Influence of Hydrostatic Pressure on Chloride Ion Penetration of Marine Concrete (정수압이 해양콘크리트의 염화물이온 침투에 미치는 영향)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Bo-Kyeong;Lim, Chang-Hyuck
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • The Marine concrete that located at immersion zone receives an hydrostatic pressure of 1 atm as depth of the water increased by 10 m. And it could accelerate chloride ion penetration. In this study, to evaluate the influence of hydrostatic pressure on chloride ion penetration, concrete mixed by ordinary Portland cement and Portland blast-furnace slag cement was exposed to 1 and 6 atm and substitute ocean water. As a result, the surface chloride ion concentration of the concrete under 6 atm of hydrostatic pressure increased rapidly and the water-soluble chloride ion contents was increased by depth. In addition, the concrete under 6 atm of hydrostatic pressure showed the increase of capillary pores corresponding to 5~100 nm.

Prediction Models for Corrosion of Reinforcing Bars (철근의 부식 예측 모델에 관한 연구)

  • 김도겸;이종석;고경택;이장화;송영철;조명석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.739-742
    • /
    • 1999
  • A reinforcement corrosion prediction model was proposed using the results from accelerated testing and mathematical equation from the Fick's 2nd law for chloride-induced corrosion of reinforcement in concrete. The input data included the chloride concentration, mix characteristics of concrete, and environmental conditions. This model can be used to predict the chloride concentration pertaining to corrosion time and loading age for marine concrete structures. This model can also be used to predict the service life.

  • PDF

A Literature Study on Self Healing Concrete Using Reaction Control Materials of Sulfate Anion (황산이온 반응제어 물질을 이용한 자기치유 콘크리트에 관한 문헌 연구)

  • Kim, Bo-Seok;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.122-123
    • /
    • 2016
  • Sulfate anion which cause concrete degradation is affected on marine structures. There are two of control method concrete degradation which is arisen by sulfate anion. Cementitious materials prevent permeation of sulfate anion and water-binder ratio increase to improve watertightness. But, those methods are passive. So, this study is developing new materials which prevent actively concrete degradation on sulfate anion.

  • PDF

Current Status of the Durability Study of Concrete Made with Various Cements in Korean Marine Environment (한국해양조건에서의 시멘트 종류별 콘크리트 내구 특성)

  • 박춘근;엄태형;정해문;임정렬;지정식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.163-169
    • /
    • 1997
  • The sea water resistance of cement and concrete must be considered when it is used for construction on the seashore of in the ocean. The concrete specimens using seven type of cements such as ordinary Portland cement, moderate heat Portland cement, sulfate resistance Portland cement, type A. B. C Portland blastfurnace slag cement and Portland flyash cement were immersed for 10 years in seawater in Kunsan. This study proved that moderate heat Portland cement, sulfate resistance Portland cement, type A Portland blastfurnace slag cement had higher resistance for seawater.

  • PDF

Chloride Ion Penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure (해양환경 폭로에 의한 슬래그 치환 콘크리트 및 슬래그 콘크리트의 염화물 이온 침투 저항성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Gyeong-Tae;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.299-306
    • /
    • 2017
  • In this research, it was examined chloride ion penetration resistance of slag-replaced concrete and cementless slag concrete considering marine environmental exposure conditions of splash zone, tidal zone and immersion zone. In the design strength of grade 24 MPa, the specimens were tested to determine their compressive strength, scanning electron microscopy images and chloride migration coefficient. Further, chloride ion penetration depth and carbonation depth of specimens exposed to marine environment were measured. Experimental results confirm that chloride migration coefficient of specimens tended to decrease with increasing the replacement ratio of ground granulated blast-furnace slag in accelerated laboratory test. In addition, the specimens exposed to the tidal zone were found to be the greatest chloride ion penetration depth compared to splash zone and immersion zone. On the other hand, the chloride ion penetration depth of the specimens exposed to splash zone tended to increase with increasing the replacement ratio of ground granulated blast-furnace slag in contrast with the results for the tidal zone and immersion zone.