• 제목/요약/키워드: Marcinkiewicz integral operator

검색결과 7건 처리시간 0.012초

Weighted Lp Boundedness for the Function of Marcinkiewicz

  • Al-Qassem, Hussain M.
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.31-48
    • /
    • 2006
  • In this paper, we prove a weighted norm inequality for the Marcinkiewicz integral operator $\mathcal{M}_{{\Omega},h}$ when $h$ satisfies a mild regularity condition and ${\Omega}$ belongs to $L(log L)^{1l2}(S^{n-1})$, $n{\geq}2$. We also prove the weighted $L^p$ boundedness for a class of Marcinkiewicz integral operators $\mathcal{M}^*_{{\Omega},h,{\lambda}}$ and $\mathcal{M}_{{\Omega},h,S}$ related to the Littlewood-Paley $g^*_{\lambda}$-function and the area integral S, respectively.

  • PDF

A NOTE ON END PROPERTIES OF MARCINKIEWICZ INTEGRAL

  • DING, YONG
    • 대한수학회지
    • /
    • 제42권5호
    • /
    • pp.1087-1100
    • /
    • 2005
  • In this note we give the mapping properties of the Marcinkiewicz integral !-to. at some end spaces. More precisely, we first prove that !-to. is a bounded operator from H$^{1,($\mathbb{R) to H$^{1, ($\mathbb{R). As a corollary of the results above, we obtain again the weak type (1,1) boundedness of $\mu$$_{, but the condition assumed on n is weaker than Stein's condition. Finally, we show that !-to. is bounded from BMO($\mathbb{R) to BMO($\mathbb{R). The results in this note are the extensions of the results obtained by Lee and Rim recently.

On the Boundedness of Marcinkiewicz Integrals on Variable Exponent Herz-type Hardy Spaces

  • Heraiz, Rabah
    • Kyungpook Mathematical Journal
    • /
    • 제59권2호
    • /
    • pp.259-275
    • /
    • 2019
  • The aim of this paper is to prove that Marcinkiewicz integral operators are bounded from ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ to ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ when the parameters ${\alpha}({\cdot})$, $p({\cdot})$ and $q({\cdot})$ satisfies some conditions. Also, we prove the boundedness of ${\mu}$ on variable Herz-type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$.