• Title/Summary/Keyword: Manufacturing nanomaterials

Search Result 35, Processing Time 0.024 seconds

A Review of Nanomaterials in Cement-Based Composite

  • LI, MAO;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.174-186
    • /
    • 2019
  • This paper reviews the development condition of nanomaterials used in concrete over years. The definitions of nanomaterial, nanotechnology, and nano-concrete are reviewed. The impacts of nanomaterials on cementitious material in the point of advantages and disadvantages are analyzed. Moreover, this paper analyzes and classifies the nanomaterials into the extra quality enhancement and modification to plain cementitious composite. Indeed, the outstanding properties of the embedded nanomaterials can be introduced to concrete such as the mechanical improvement, pore structure refinement, hydrate acceleration, and smartness modifying of self-cleaning, and/or self-sensing. Before the full potential of nanotechnology can be realized in concrete applications, various techniques have to be solved including proper dispersion, compatibility of the nanomaterials in cement, processing, manufacturing, safety, handling issues, scale-up, cost, the impact on the environment and human health.

Effect of Alumina Nanooxide Application on Nitrendipine Manufacturing Process (알루미나 나노산화물이 Nitrendipine 제조 공정에 미치는 영향)

  • Chae, E.J.;Uhm, Y.R.;Han, B.S.;Rhee, C.K.;Park, S.E.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.127-131
    • /
    • 2007
  • The alumina nano powders synthesized by levitational gas condensation (LGC) method were applied to catalyst in manufacturing process of Hanzsch reaction for Nitrendipine. The L-tartaric acid on the surface is carried out with participation of carbonyl fragments, O-H, C-H bonds which affects stereo selectivity, yield on the reagents positively. From the analysis of the IR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. From the analysis of the rR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. The newly created bonds made a chiral center on the final product.

Research Trends of Food Chain Transfer of Nanomaterials in Freshwater and Marine Ecosystems (담수 및 해양생태계에서 나노물질의 먹이사슬전이 연구추세)

  • Chae, Yooeun;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.683-690
    • /
    • 2014
  • Nanomaterials are used in a range of fields, including industry, medicine, aerospace, and manufacturing, due to their unique and useful properties. In recent years, nanotechnology has developed rapidly, and the amount of nanomaterials used in various fields has increased consistently. As a result, nanomaterials are released into the aquatic and soil ecosystem, posing potential risks to organisms and environment. These materials can enter the cells and may cause serious damage to organisms. Furthermore, they can be transferred through trophic levels and food web, thereby leading to bioconcentration and biomagnification. In this study, we analyzed the trends in research on food chain transfer of nanomaterials and investigated the techniques used in the research. Although many studies have been underway, there is a need for further advanced studies on higher trophic levels and complex microcosm and mesocosm. Furthermore, study topics should be expanded to include various types of nanomaterials and varied species and trophic levels.

Suggestion of Physicochemical Characteristics and Safety Management in the Waste Containing Nanomaterials from Engineered Nano-materials Manufacturing Plants and Waste Treatment Facilities (산업용제조시설과 폐기물처리시설에서 발생된 나노폐기물의 물리화학적 특성 및 안전관리방안 제시)

  • Kim, Woo-Il;Yeon, Jin-Mo;Cho, Na-Hyeon;Kim, Yong-Jun;Um, Nam-Il;Kim, Ki-Heon;Lee, Young-Kee
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.670-682
    • /
    • 2018
  • Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.

Nano-safety Management and Exposure Assessment of Nanomaterials Producing Facilities (나노물질 생산시설의 환경노출 평가와 안전관리)

  • Umh, Ha Nee;Roh, Jinkyu;Park, Junsu;Kwak, Byoung Kyu;Lee, Byung Cheon;Choi, Kyunghee;Yi, Jongheop;Kim, Younghun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.112-117
    • /
    • 2012
  • With the development of nanotechnology, nano-consumer products have been popularized. For the past 10 years, potential risk of nanomaterials to human and environment have been raised carefully. Especially, workers, who directly handle nanomaterials in laboratories and manfacturers, will lead to direct exposure of nanomaterials. Therefore, direct exposure assessment and field monitoring of nanomaterials are required to assess and manage the nanomaterial exposure to human and environment. In this work, two nano-manufacturing companies, which had plasma and sol-gel processes, were selected to analyze the main exposure source and process with in-situ SMPS (scanning mobility particle sizer) and ex-situ TEM (transmission electron microscopy). The results showed that the colloidal nanoparticle in liquid phase was easily evaporated and monitored by SMPS. Most serious thing is that the workers does not know about the potential risk of nanomaterials, and thus they are not taking proper protection activities, such as PPE (personal protective equipment). Therefore, exposure assessment for nanomaterial handling facilities should be additionally carried out, and nano-safety management protocols are also provided.

Behavior Evaluation of Aluminium oxide through Measurement of Mass Concentration under Laboratory Environment (연구실 환경에서의 질량농도 측정을 통한 Aluminium oxide의 거동 평가)

  • Park, Jeong-Hwa;Kim, Dong-Hyun;Kim, Jong-Kyu;Kim, Hyung-Sik;Kim, Jeong-Hun
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.279-285
    • /
    • 2016
  • With the development of nanotechnology, the amount of nanomaterials increases and the problems of environment and the toxic property associated with it have become a social problem. But regulations and laws of nanomaterials have not yet been established. The purpose of this study is to utilize as the database of safety guidelines for research activities' workers associated with nanomaterials to conduct a behavior evaluation of aluminium oxide, which is most widely used in thirteen kinds of WPMN manufactured nanomaterials in the country. The experiment proceeds in the chamber reduced to 1/6 size of the actual laboratory, the test method was performed in NIOSH 0500. As the results of the study, the mass concentration was in inverse proportion to the particle size of the nanomaterials. And the mass concentration during the operation of ventilation equipment was reduced to about 1/8 times. In the future, it can be utilized as the database of safety guidelines for research activities' workers associated with nanomaterials. However, in order to increase the reliability of the study, the experiment of the mass concentration by particle size and Condensation Particle Counters will be needed additionally.

Microstructural Characteristics of Thermally Sprayed WC-Co Coatings (Thermally Sprayed WC-Co 코팅층의 미세조직 및 특성)

  • Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • The degree of WC decomposition and hardness of thermally sprayed WC-Co coatings are important factors determining the wear resistance of the coatings. In order to minimize the degree of decomposition and to increase hardness, the effects of processing parameters of high velocity oxyfuel(HVOF) spraying on various characteristics of nanostructured WC-12Co coating have been evaluated by an experimental design method. The HVOF sprayed WC-12Co coatings consisted of various carbide phases including WC, $W_2C$ and $W_3Co_3C$, with a much reduced carbon content. The degree of WC decomposition and decarburization was affected by changing barrel length and spray distance. The hardness of WC-Co coatings was strongly related to droplet temperature at substrate, and increased with increasing fuel addition and/or decreasing spray distance. The effective control of processing parameters was discussed in detail for manufacturing a high performance WC-Co coating.

Bending Strength and Microstructure of Cement Paste Containing SWCNT Dispersion Solution (SWCNT 분산용액을 혼입한 시멘트 페이스트의 휨강도 및 미세구조)

  • Choi, Ik-Je;Kim, Ji-Hyun;Lee, Soo-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.149-150
    • /
    • 2017
  • It is known that physical and chemical changes of cement hydrates cause problems in the volume stability of concrete. In order to overcome these problems, there is a growing interest in research on mixing technology of cement-based materials and nanomaterials. Among the nanomaterials, carbon nanotubes (CNTs) are attracting attention due to their excellent mechanical properties. The CNTs are made of cylindrically shaped graphene sheets. According to the number of sheets, single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are classified. Although the SWCNT has superior mechanical properties, the research using MWCNT is vigorous due to the difficulty of marketability and manufacturing, but the research using SWCNT is insufficient. In this study, we investigate the effect of SWCNT on the formation of hydrate of cement paste by observing the microstructure of broken cement paste after measuring the flexural strength of cement paste with SWCNT dispersion.

  • PDF

Synthesis and Film Properties of Cross-linked Polysulfone with Imide Side Chain (이미드 곁가지로 가교되는 폴리설폰의 합성 및 필름 특성)

  • Lee Eun-Sang;Hong Sung-Kwon;Kim Yong-Seok;Lee Jae-Heung;Kim In-Sun;Won Jong-Chan
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2006
  • The mort commonly available substrate material is glass in the display fibrication process. However, glass is not desirable due to its heaviness and fragility. Recently, plastics such polysulfone (PSF), polyethesulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET) and cyclic olefin polymers (COP) have been investigated to replace glass as a substrate material for display fibrication. Plastic substrates are advantageous in that they are lightweight, huh impart resistance, flexibility, and ability for roll to roll manufacturing process. But many plastics have poor chemical resistance in organic solvent. The chemica resistance is also lequired because they are exposed to solvents for various chemical treatments din the manufacturing process. So, we have an interest in the chemical modification of PSF to improve chemical resistance. We introduced crosslinkable imide moieties using chloromethylation method for the modification of PSF which could be overcome above shortcomings for display substrate based on plastic film. We prepared the cross-linked polysulfone films which were represented chemical resistance in HeOH, THF, DMSO and NMP. The thermal properties were measured by TGA, DSC and TMA. As the results, we have confirmed to enhance of the thermal property. They had low coefficient of thermal expansion (CTE) which decreased to 15% and had increased $T_g\;from\;180^{\circ}C\;to\;252^{\circ}C$. Cross-linked polysulfone films with imide side-chain had good optical properties and chemical resistance so that they could be used as flexible display substrate.

Assessment of Removal of Silver Nanoparticle in Sewage Treatment Plant Waste Using Process Simulation (공정 모사를 통한 하수처리장 내 은나노물질 제거 평가)

  • Oh, Seung Yeon;Kim, Younghun
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.160-165
    • /
    • 2014
  • Over the past decade, an increasing number of manufactured nanoparticles (NPs) have been incorporated into products and manufacturing processes due to the rapid innovation and commercialization in the field of nanotechnology. In addition, these nanomaterials and nano-consumer products have increased in quantity per year, and thus their uncontrolled release into the environment is anticipated to grow dramatically in future. However, A current sewage/wastewater treatment plant (SWTP) is being applied to removal of nanoparticles in wastewater. In Korea, the study on the removal of nanoparticles in SWTP was not reported yet. Therefore, in this work, to design pilot STP before field test, two model equations and commercial process simulation were used to derive the desing parameters.