Browse > Article
http://dx.doi.org/10.14190/JRCR.2019.7.2.174

A Review of Nanomaterials in Cement-Based Composite  

LI, MAO (Department of Architectural Engineering, Kongju National University)
Kim, Jin-Man (Department of Architectural Engineering, Kongju National University)
Publication Information
Journal of the Korean Recycled Construction Resources Institute / v.7, no.2, 2019 , pp. 174-186 More about this Journal
Abstract
This paper reviews the development condition of nanomaterials used in concrete over years. The definitions of nanomaterial, nanotechnology, and nano-concrete are reviewed. The impacts of nanomaterials on cementitious material in the point of advantages and disadvantages are analyzed. Moreover, this paper analyzes and classifies the nanomaterials into the extra quality enhancement and modification to plain cementitious composite. Indeed, the outstanding properties of the embedded nanomaterials can be introduced to concrete such as the mechanical improvement, pore structure refinement, hydrate acceleration, and smartness modifying of self-cleaning, and/or self-sensing. Before the full potential of nanotechnology can be realized in concrete applications, various techniques have to be solved including proper dispersion, compatibility of the nanomaterials in cement, processing, manufacturing, safety, handling issues, scale-up, cost, the impact on the environment and human health.
Keywords
Nano materials; Cementitious material; Nanotechnology; Nano-concrete;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, W., Han, B., Yu, X., Ruan, Y., Ou, J. (2018). Nano boron nitride modified reactive powder concrete, Construction and Building Materials, 179, 186-197.   DOI
2 Saggar, R., Porwal, H., Tatarko, P., Dlouhy, I., Reece, M. J. (2015). Boron nitride nanosheets reinforced glass matrix composites, Advances in Applied Ceramics, Structural, Functional and Bioceramics, 114,
3 Al-Rub, R.K.A., Ashour, A.I., Tyson, B.M. (2012). On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites, Construction and Building Materials, 35, 647-655.   DOI
4 Liu, Q., Zhao, H.Q., Li, L., He, P.P., Wang, Y.X., Yang, H.Y., Hu, Z.H., Mu. Y. (2018). Effect of surface modification on carbon nanotubes (CNTs) catalyzed nitrobenzene reduction by sulfide, Journal of Hazardous Materials, 357, 235-243.   DOI
5 Ismael, R., Silva, J.V., Carmo, R.N.F., Soldado, E., Lourenco, C., Costa, H., Julio, E. (2016). Influence of nano-$SiO_2$ and nano-$Al_2O_3$ additions on steel-to-concrete bonding, Construction and Building Materials, 125, 1080-1092.   DOI
6 Ortega-Villar, R., Lizarraga-Mendiola, L., Coronel-Olivares, C., Lopez-Leon, L.D., Bigurra-Alzati, C.A., Vazquez-Rodriguez, G.A. (2019). Effect of photocatalytic $Fe_2O_3$ nanoparticles on urban runoff pollutant removal by permeable concrete, Journal of Environmental Management, 242, 487-495.   DOI
7 Han, B., Li, Z., Zhang, L., Zeng, S., Yu, X., Han, B., Ou, J. (2017). Reactive powder concrete reinforced with nano $SiO_2$-coated $TiO_2$, Construction and Building Materials, 148, 104-112.   DOI
8 Vallee, F. (2004). Cementitious materials for self-cleaning and depolluting facade surfaces, RILEM International Symposium on Environment-Conscious Materials and Systems for Sustainable Development, 337-346.
9 Ghafari, E., Costa, H., Julio, E. (2015). Review on eco-efficient ultra high performance concrete enhanced with nano-materials, Construction and Building Material, 101, 201-208.   DOI
10 Li, Y., Yin, J., Wu, H., Deng, H., Chen, J., Yan, Y., Liu, X., Huang, Z., Jiang, D. (2015). Enhanced electrical resistivity in SiC-BN composites with highly-active BN nanoparticles synthesized via chemical route, Journal of the European Ceramic Society, 35(5), 1647-1652.   DOI
11 Rafiee, M.A., Narayanan, T.N., Hashim, D.P., Sakhavand, N., Shahsavari, R., Vajtai, R., Ajayan, P.M. (2013). Hexagonal boron nitride and graphite oxide reinforced multifunctional porous cement composites, Advanced. Functional Materials, 23(45), 5624-5630.   DOI
12 Zhang, W., Han, B., Yu, X., Ruan, Y., Ou, J. (2018). Nano boron nitride modified reactive powder concrete, Construction and Building Materials, 179, 186-197.   DOI
13 Kim, H.K., Nam, I.W., Lee, H.K. (2012). Microstructure and mechanical/EMI shielding characteristics of CNT/cement composites with various silica fume contents, UKC 2012 on science, technology, and entrepreneurship.
14 Vinayan, B.P. (2016). Heteroatom-doped graphene-based hybrid materials for hydrogen energy conversion, Recent Advances in Graphene Research.
15 Nazari, A., Riahi, S., Riahi, S., Shamekhi, S.F., Khademno, A. (2010). Improvement the mechanical properties of the cementitious composite by using $TiO_2$ nanoparticles, Journal of American Science, 6(4), 98-101.
16 Lee, B.Y., Jayapalan, A.R., Kurtis, K.E. (2013). Effects of nano-$TiO_2$ on properties of cement-based materials, Magazine of Concrete. Research, 65(21), 1293-1302.   DOI
17 Vohra, M.S., Tanaka, K. (2003). Photocatalytic degradation of aqueous pollutants using silica-modified $TiO_2$, Water Research, 37(16), 3992-3996.   DOI
18 Jayapalan A.R., Lee B.Y., Kurtis K.E. (2009). Effect of Nano-sized Titanium Dioxide on Early Age Hydration of Portland Cement, In Nanotechnology in Construction 3 Springer, Berlin, Heidelberg
19 Meng, T., Yu, Y., Qian, X., Zhan, S., Qian, K. (2012). Effect of nano-$TiO_2$ on the mechanical properties of cement mortar, Construction and Building. Materials, 29, 241-245.   DOI
20 Haruehansapong, S., Pulngern, T., Chucheepsakul, S. (2014). Effect of the particle size of nano silica on the compressive strength and the optimum replacement content of cement mortar containing nano-$SiO_2$, Construction and Building Materials, 50, 471-477.   DOI
21 Li, H., Zhang, M.H., Ou, J.P. (2007). Flexural fatigue performance of concrete containing nano-particles for pavement, International Journal of Fatigue, 29(7), 1292-1301.   DOI
22 Li, Z., Wang, H., He, S., Lu, Y., Wang, M. (2006), Investigations on the preparation and mechanical properties of the nanoalumina reinforced cement composite, Materials Letters, 60(3), 356-359.   DOI
23 Jo, B.W., Kim, C.H., Tae, G.H., Park, J.B. (2007). Characteristics of cement mortar with nano-$SiO_2$ particles, Construction and Building Materials, 21(6), 1351-1355.   DOI
24 Ortega-Villar, R., Lizarraga-Mendiola, L., Coronel-Olivares, C., Lopez-Leon, L.D., Bigurra-Alzati, C.A., Vazquez-Rodriguez, G.A. (2019). Effect of photocatalytic $Fe_2O_3$ nanoparticles on urban runoff pollutant removal by permeable concrete, Journal of Environmental Management, 242, 487-495.   DOI
25 Jo, B.W., Kim, C.H., Tae, G.H., Park, J.B. (2007). Characteristics of cement mortar with nano-$SiO_2$ particles, Construction and Building Materials, 21, 1351-1355.   DOI
26 Li, H, Xiao, H.G., Yuan, J., Ou, J. (2004). Microstructure of cement mortar with nano-particles, Composites Part B: Engineering, 35(2), 185-189.   DOI
27 Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-$SiO_2$, Cement and Concrete Research, 35(10), 1943-1947.   DOI
28 Richardson, I.G. (2004). Tobermorite/jennite- and tobermorite/ calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, ${\beta}$-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cement and Concrete Research, 34(9), 1733-1777.   DOI
29 Kroyer, H., Lindgreen, H., Jacobsen, H.J., Skibsted, J. (2003). Hydration of Portland cement in the presence of clay minerals studied by 29Si and 27Al MAS NMR spectroscopy, Advanced Cement Research, 15(3), 103-112.   DOI
30 Lindgreen, H., Geiker, M., Kroyer, H., Springer, N., Skibsted, J. (2008). Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates, Cement and Concrete Composites, 30(8), 686-699.   DOI
31 Korb, J.P. (2009). NMR and nuclear spin relaxation of cement and concrete materials, Current Opinion in Colloid Interface Science, 14(3), 192-202.   DOI
32 Beaudoin, J.J., Raki, L., Alizadeh, R. (2009). A 29Si MAS NMR study of modified C-S-H nanostructures, Cement and Concrete Composites, 31(8), 585-590.   DOI
33 Skibsted, J., Hall, C. (2008). Characterization of cement minerals, cements and their reaction products at the atomic and nano scale, Cement and Concrete Research, 38(2), 205-225.   DOI
34 Korb, J.P., Monteilhet, L., McDonald, P.J., Mitchell, J. (2007). Microstructure and texture of hydrated cement-based materials: a proton field cycling relaxometry approach, Cement and Concrete Research, 37(3), 295-302.   DOI
35 Poulsen, S.L., Kocaba, V., Le Saoût, G., Jakobsen, H.J., Scrivener, K.L., Skibsted, J. (2009). Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: effects of paramagnetic ions, Solid State Nuclear Magnetic Resonance, 36(1), 32-44.   DOI
36 Cong, X., Kirkpatrick, R.J. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate, Advanced Cement Based Materials, 3(3-4), 144-156.   DOI
37 Richardson, I.G. (1999). The nature of C-S-H in hardened cements, Cement and Concrete Research, 29(8), 1131-1147.   DOI
38 Nonat. A. (2004). The structure and stoichiometry of C-S-H, Cement and Concrete Research, 34(9), 1521-1528.   DOI
39 Li, G.Y., Wang, P.M., Zhao, X. (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement and Concrete Composite, 29(5), 377-82.   DOI
40 Makar, J., Margeson, J., Luh, J. (2005). Carbon nanotube/cement composites-early results and potential application. In: Banthia N, Uomoto T, Bentur A, Shah SP, editors. Proceedings of 3rd international conference on construction materials: performance, innovations and structural implications, 1-10.
41 Xie, X.L., Mai, Y.W., Zhou, X.P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: a review, Materials Science and Engineering: R: Reports, 49(4), 89-112.   DOI
42 Kang I, Heung, Y.Y., Kim, J.H., Lee, J.W., Gollapudi, R., Subramaniam, S., Narasimhadenara, S., Hurd, D., Kirikera, G.R., Shanov, V., Schulz, M.J., Shi, D., Boerio, J., Mall, S., Ruggles-Wren, M. (2006). Introduction to carbon nanotube and nanofiber smart materials, Composites Part B: Engineering, 37(6), 382-394.   DOI
43 Sanchez, F., Sobolev, K. (2010). Nanotechnology in concrete-a review, Construction and Building Materials, 24(11), 2060-2071.   DOI
44 Li, H., Xiao, H.G., Ou, J.P. (2004). A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cement and Concrete Research, 34(3), 435-438.   DOI
45 Alberti, M.G., Enfedaque, A., Galvez, J.C. (2017). Fiber reinforced concrete with a combination of polyolefin and steel-hooked fibers, Composite Structures, 171(1), 317-325.   DOI
46 Lin, C., Wei, W., Hu, Y.H. (2016). Catalytic behavior of graphene oxide for cement hydration process, Journal of Physics and Chemistry of Solids, 89, 128-133.   DOI
47 Jennings, H.M., Bullard, J.W., Thomas, J.J., Andrade, J.E., Chen, J.J., Scherer, G.W. (2008). Characterization and modeling of pores and surfaces in cement paste: correlations to processing and properties, Journal of Advanced Concrete Technology, 6(1), 5-29.   DOI
48 Xu, S., Liu, J., Li, Q. (2015). Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste, Construction and Building Materials, 76, 16-23.   DOI
49 Musso, S., Tulliani, J.M., Ferro, G., Tagliaferro, A. (2009). Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Composite Science and Technology, 69(11-12), 1985-1990.   DOI
50 Kim, G.M., Park, S.M., Ryu, G.U., Lee, H.K. (2017). Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber, Cement and Concrete Composites, 82, 165-175.   DOI
51 Sanchez, F., Borwankar, A. (2010). Multi-scale performance of carbon microfiber reinforced cement-based composites exposed to a decalcifying environment, Materials Science and Engineering: A, 527(13-14), 3151-3158.   DOI
52 Singh, N.B., Kalra, M., Saxena, S.K. (2017). Nanoscience of Cement and Concrete, Materialstoday: Proceedings, 4(4), 5478-5487.
53 Abdoli, H., Farnoush, H.R., Asgharzadeh, H., Sadrnezhaad, S.K. (2011). Effect of high energy ball milling on compressibility of nanostructured composite powder, Powder Metallurgy, 54(1), 24-29.   DOI
54 Drexler, K.E., Peterson, C., Pergamit, G. (1991). Unbounding the Future: the Nanotechnology Revolution, William Morrow and Company, New York.
55 Jankowska, E., Zatorski, W. (2009). Emission of nanosize particles in the process of nanoclay blending, in: Third International Conference on Quantum, Nano and Micro Technologies.
56 Sobolev, K., Gutierrez, M.F. (2005). How nanotechnology can change the concrete world: Part 1, American Ceramic Society Bulletin, 84(11), 113-116.
57 Norhasri, M.M., Hamidah, M.S., Fadzil, A.M. (2017). Applications of using nano material in concrete: A review, Construction and Building Materials, 133(15), 91-97.   DOI
58 Feynman, R.P. (1960). There's plenty of room at the bottom(reprint from speech given at annual meeting of the american physical society), Engineering and Science, 23, 22-36.
59 Li, G.Y., Wang, P.M., Zhao, X. (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement and Concrete Composite, 29(5), 377-382.   DOI
60 Nam, I.W., Lee, H.K., Jang, J.H. (2011). Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites, Composites Part A: Applied Science and Manufacturing, 42(9), 1110-1118.   DOI
61 Stallings, J.M., Cousins, T.E., Stafford, T.E. (1996). Effects of Removing Diaphragms from Steel Girder Bridge, Transportation Research Record, 1541(1), 183-188.   DOI
62 Yang, X., Zhu, J., Qiu, L., Li, D. (2011). Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors, Advanced Materials, 23(25), 2833-2838.   DOI
63 Alkhateb, H., Al-Ostaz, A., Cheng, A.H.D., Li, X. (2013). Materials genome for graphene-cement nanocomposites, Journal of Nanomechanics and Micromechanics, 3(3), 67-77.   DOI
64 Rhee, I., Lee, J.S., Kim, Y.A., Kim, J.H., Kim, J.H. (2016). Electrically conductive cement mortar: incorporating rice husk-derived high-surface-area graphene, Construction and Building Materials, 125, 632-642.   DOI
65 Lin, K.L., Chang, W.C., Lin, D.F., Luo, H.L., Tsai, M.C. (2008). Effects of nano-$SiO_2$ and different ash particle sizes on sludge ash-cement mortar, Journal of Environmental Management, 88(4), 708-714.   DOI
66 NSTC. (2007). The National Nanotechnology Initiative - Strategic Plan, December 2007. Executive Office of the President of the United States.
67 Hanus, M.J., Harris, A.T. (2013). Nanotechnology innovations for the construction industry, Progress in Materials Science, 58(7), 1056-1102.   DOI
68 Bjornstrom, J., Martinelli, A., Matic, A., Borjesson, L., Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement, Chemical Physics Letters, 392(1-3), 242-248.   DOI
69 Jo, B.W., Kim, C.H., Tae, G.H., Park, J.B. (2007). Characteristics of cement mortar with nano-$SiO_2$ particles, Construction and Building Materials, 21(6), 1351-1355.   DOI
70 Ding, S., Ruan, Y., Yu, X., Han, B., Ni, Y.Q. (2019). Self-monitoring of smart concrete column incorporating CNT/NCB composite fillers modified cementitious sensors, Construction and Building Materials, 201, 127-137.   DOI
71 Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P. (2010). Highly dispersed carbon nanotube reinforced cement based materials, Cement and Concrete Research, 40(7), 1052-1059.   DOI
72 Chuah, S., Pan, Z., Sanjayan, J.G., Wang, C.M., Duan, W.H. (2014). Nano reinforced cement and concrete composites and new perspective from graphene oxide, Construction and Building Materials, 73, 113-124.   DOI