Browse > Article
http://dx.doi.org/10.15681/KSWE.2014.30.6.683

Research Trends of Food Chain Transfer of Nanomaterials in Freshwater and Marine Ecosystems  

Chae, Yooeun (Department of Environmental Science, Konkuk University)
An, Youn-Joo (Department of Environmental Science, Konkuk University)
Publication Information
Abstract
Nanomaterials are used in a range of fields, including industry, medicine, aerospace, and manufacturing, due to their unique and useful properties. In recent years, nanotechnology has developed rapidly, and the amount of nanomaterials used in various fields has increased consistently. As a result, nanomaterials are released into the aquatic and soil ecosystem, posing potential risks to organisms and environment. These materials can enter the cells and may cause serious damage to organisms. Furthermore, they can be transferred through trophic levels and food web, thereby leading to bioconcentration and biomagnification. In this study, we analyzed the trends in research on food chain transfer of nanomaterials and investigated the techniques used in the research. Although many studies have been underway, there is a need for further advanced studies on higher trophic levels and complex microcosm and mesocosm. Furthermore, study topics should be expanded to include various types of nanomaterials and varied species and trophic levels.
Keywords
Aquatic ecosystem; Food chain transfer; Nanomaterials; Nanoparticles; Trophic transfer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Villalobos-Hernandez, J. R. and Muller-Goymann, C. C. (2006). Sun Protection Enhancement of Titanium Dioxide Crystals by the Use of Carnauba Wax Nanoparticles: The Synergistic Interaction Between Organic and Inorganic Sunscreens at Nanoscale, International Journal of Pharmaceutics, 322, pp. 161-170.   DOI   ScienceOn
2 Wang, J. and Wang, W. X. (2014). Low Bioavailability of Silver Nanoparticles Presents Trophic Toxicity to Marine Medaka (Oryzias melastigma), Environmental Science and Technology, 48, pp. 8152-8161.   DOI
3 Werlin, R., Priester, J. H., Mielke, R. E., Kramer, S., Jackson, S., Stoimenov, P. D., Stucky, G. D., Cherr, G. N., Orias, E., and Holden, P. A. (2011). Biomagnification of Cadmium Selenide Quantum Dots in a Simple Experimental Microbial Food Chain, Nature Nanotoxicology, 6, pp. 65-71.
4 Withers, F. C., Loutfy, R. O., and Lowe, T. P. (1997). Fullerene Commercial Vision, Fullerene Science and Technology, 5(1), pp. 1-31.   DOI
5 Yeo, M. K. and Nam, D. H. (2013). Influence of Different Types of Nanomaterials on Their Bioaccumulation in a Paddy Microcosm: A Comparison of $TiO_2$ Nanoparticles and Nanotubes, Environmental Pollution, 178, pp. 166-172.   DOI   ScienceOn
6 Zhao, H., Yang, J., Wang, L., Tian, C., Jiang, B., and Fu, H. (2011). Fabrication of a Palladium Nanoparticle/Graphene Nanosheet Hybrid via Sacrifice of a Copper Template and Its Application in Catalytic Oxidation of Formic Acid, Chemical Communications, 47, pp. 2014-2016.   DOI
7 Zhu, M., Nie, G., Meng, H., Xia, T., Nel, A., and Zhao, Y. (2012). Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate, Accounts of Chemical Research, 46(3), pp. 622-631.
8 Ali, T. and Venkataraman, A. (2014). Synthesis and Characterization of Polyvinyl alcohol(PVA) Coated Funtionalized ${\gamma}$-$Fe_2O_3$ Nanoparticals, International Journal of Advances in Engineering and Technology, 7(2), pp. 416-420.
9 Arie, A. A., Vovk, O. M., Song, J. O., Cho, B. W., and Lee, J. K. (2009). Carbon Film Covering Originated from Fullerene $C_{60}$ on the Surface of Lithium Metal Anode for Lithium Secondary Batteries, Journal of Electroceramics, 23, pp. 248-253.   DOI
10 Ates, M., Arslan, Z., Demir, V., Daniels, J., and Farah, I. O. (2014). Accumulation and Toxicity of CuO and ZnO Nanoparticles through Waterborne and Dietary Exposure of Goldfish (Carassius auratus), Environmental Toxicology (Online Version of Record published before inclusion in an issue).
11 Bae, E., Lee, J., Kim, Y., Choi, K., and Yi, J. (2009). Sample Preparation and Analysis of Physic-chemical Properties for Safety Assessment of Manufactured Nanomaterials, Journal of the Korean Society for Environmental Analysis, 12(2), pp. 59-73. [Korean Literature]
12 Zhu, X., Wang, J., Zhang, X., Chang, Y., and Chen, Y. (2010). Trophic Transfer of $TiO_2$ Nanoparticles from Daphnia to Zebrafish in a Simplified Freshwater Food Chain, Chemosphere, 79, pp. 928-933.   DOI   ScienceOn
13 Bouldin, J. L., Ingle, T. M., Sengupta, A., Alexander, R., Hannigan, R. E., and Buchanan, R. A. (2008). Aqueous Toxicity and Food Chain Transfer of Quantum Dots in Freshwater Algae and Ceriodaphnia dubia, Environmental Toxicology and Chemistry, 27(9), pp. 1958-1963.   DOI   ScienceOn
14 Cedervall, T., Hansson, L. A., Lard, M., Frohm, B., and Linse, S. (2012). Food Chain Transfer of Nanoparticles Affects Behaviour and Fat Metabolism in Fish, PLos one, 7(2), pp. 1-6.
15 Cleveland, D., Long, S. E., Pennington, P. L., Cooper, E., Fulton, M. H., Scott, G. I., Brewer, T., Davis, J., Petersen, E. J., and Wood, L. (2012). Pilot Estuarine Mesocosm Study on the Environmental Fate of Silver Nanomaterials Leached from Consumer Products, Science of the Total Environment, 421-422, pp. 267-272.   DOI
16 Conway, J. R., Hanna, S. K., Lenihan, H. S., and Keller, A. A. (2014). Effects and Implications of Trophic Transfer and Accumulation of $CeO_2$ Nanoparticles in a Marine Mussel, Environmental Science and Technology, 48, pp. 1517-1524.   DOI
17 Cordeiro, L. F., Marques, B. F., Kist, L. W., Bogo, M. R., Lopez, G., Pagano, G., Kulkamp-Guerreiro, I. C., and Monserrat, J. M. (2014). Toxicity of Fullerene and Nanosilver Nanomaterials against Bacteria Associated to the Body Surface of the Estuarine Worm Laeonereis acuta (Polychaeta, Nereididae), Marine Environmental Research, 99, pp. 52-59.   DOI
18 Croteau, M. N., Dybowska, A. D., Luoma, S. N., and Valsami-Jones, E. (2011). A Novel Approach Reveals that Zinc Oxide Nanoparticles Are Bioavailable and Toxic After Dietary Exposures, Nanotoxicology, 5(1), pp. 79-90.   DOI
19 Dalai, S., Iswarya, V., Bhuvaneshwari, M., Pakrashi, S., Chandrasekaran, N., and Mukherjee, A. (2014). Different Modes of $TiO_2$ Uptake by Ceriodaphnia dubia: Relevance to Toxicity and Bioaccumulation, Aquatic Toxicology, 152, pp. 139-146.   DOI
20 Ferry, J. L., Craig, P., Hexel, C., Sisco, P., Frey, R., Pennington, P. L., Fulton, M. H., Scott, I. G., Decho, A. W., Kashiwada, S., Murphy, C. J., and Shaw, T. J. (2009). Transfer of Gold Nanoparticles from the Water Column to the Estuarine Food Web, Nature Nanotechnology, 4, pp. 441-444.   DOI   ScienceOn
21 Gambardella, C., Gallus, L., Gatti, A. M., Faimali, M., Carbone, S., Antisari, L. V., Falugi, C., and Ferrando, S. (2014). Toxicity and Transfer of Metal Oxide Nanoparticles from Microalgae to Sea Urchin Larvae, Chemistry and Ecology, 30(4), pp. 308-316.   DOI
22 Gilroy, K. D., Neretina, S., and Sanders, R. W. (2014). Behavior of Gold Nanoparticles in an Experimental Agal-zooplankton Food Chain, Journal of Nanoparticle Research, 16, pp. 2414.   DOI
23 Guo, Z., Zhang, Y., DuanMu, Y., Xu, L., Xie, S., and Gu, N. (2006). Facile Synthesis of Micrometer-sized Gold Nanoplates through an Aniline-assisted Route in Ethylene Glycol Solution, Colloids and Surfaces A, 278, pp. 33-38.   DOI   ScienceOn
24 Holbrook, R. D., Murphy, K. E., Morow, J. B., and Cole, K. D. (2008). Trophic Transfer of Nanoparticles in a Simplified Inverebrae Food Web, Nature Nanotechnology, 3, pp. 352-355.   DOI   ScienceOn
25 Jackson, B. P., Bugge, D., Ranville, J. F., and Chen, C. Y. (2012). Bioavailability, Toxicity, and Bioaccumulation of Quantum Dot Nanoparticles to the Amphipod Leptocheirus plumulosus, Environmental Science and Technology, 46, pp. 5550-5556.   DOI
26 Lee, W. M. and An, Y. J. (2010). Research Trends of Ecotoxicity of Nanoparticles in Water Environment, Journal of Korean Society on Water Environment, 26(4), pp. 566-573. [Korean Literature]
27 Lee, W. M. and An, Y. J. (2011). Research Trend of Trophic Transfer of Nanoparticles in Aquatic Ecosystems, Korean Journal of Limnology, 44(4), pp. 317-326. [Korean Literature]   과학기술학회마을
28 Lee, W. M. and An, Y. J. (2014). Evidence of Three-level Trophic Transfer of Quantum Dots in an Aquatic Food Chain by Using Bioimaging, Nanotoxicology, (Online Version of Record published before inclusion in an issue).
29 Lewinski, N. A., Zhu, H., Ouyang, C. R., Conner, G. P., Wagner, D. S., Colvin, V. L. and Drezek, R. A. (2011). Trophic Transfer of Amphiphilic Polymer Coated CdSe/ZnS Quantum Dots to Danio rerio, Nanoscale, 3, pp. 3080-3083.   DOI
30 Marambio-Jones, C. and Hoek, E. M. V. (2010). A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment, Journal of Nanoparticle Research, 12, pp. 1531-1551.   DOI   ScienceOn
31 McTeer, J., Dean, A. P., White, K. N., and Pittman, J. K. (2014). Bioaccumulation of Silver Nanoparticles into Daphnia magna from a Freshwater Algal Diet and the Impact of Phosphate Availability, Nanotoxicology, 8(3), pp. 305-316.   DOI
32 Meng, F. and Jin, S. (2011). The Solution Growth of Copper Nanowires and Nanotubes is Driven by Screw Dislocations, Nano Letters, 12, pp. 234-239.
33 Mielke, R. E., Priester, J. H., Werlin, R. A., Gelb, J., Horst, A. M., Orias, E., and Holden, P. A. (2013). Differential Growth of and Nanoscale $TiO_2$ Accumulation in Tetrahymena thermophila by Direct Feeding versus Trophic Transfer from Pseudomonas aeruginosa, Applied and Environmental Microbiology, 79(18), pp. 5616-5624.   DOI
34 Pakrashi, S., Dalai, S., Chandrasekaran, N., and Mukherjee, A. (2014). Trophic Transfer Potential of Aluminium Oxide Nanoparticles Using Representative Primary Producer (Chlorella ellipsoides) and a Primary Consumer (Ceriodaphnia dubia), Aquatic Toxicology, 152, pp. 74-81.   DOI
35 Reisetter, A. C., Stebounova, L. V., Baltrusaitis, J., Powers, L., Gupta, A., Grassian, V. H., and Monick, M. M. (2011). Induction of Inflammasome-dependent Pyroptosis by Carbon Black Nanoparticles, The Journal of Biological Chemistry, 286(24), pp. 21844-21852.   DOI
36 Renault, S., Baudrimont, M., Mesmer-Dudons, N., Gonzalez, P., Mornet, S., and Brisson, A. (2008). Impacts of Gold Nanoparticle Exposure on Two Freshwater Species: A Phytoplanktonic Alga (Scenedesmus subspicatus) and a Benthic Bivalve (Corbicula fluminea), Gold Bulletin, 41(2), pp. 116-126.   DOI
37 Saafan, S. A., Assar, S. T., Moharram, B. M., and El Nimr, M. K. (2010). Comparison Study of Some Sructural and Magnetic Properties of Nano-structured and Bulk Li-Ni-Zn Ferrite Samples, Journal of Magnetism and Magnetic Materials, 322, pp. 628-632.   DOI   ScienceOn
38 Shephard, G. S., Stockenstrom, S., Villiers, D., Engelbrecht, W. J., and Wessels, G. F. S. (2002). Degradation of Microcystin Toxins in a Falling Film Photocatalytic Reactor with Immobilized Titanium Dioxide Catalyst, Water Research, 36, pp. 140-146.   DOI   ScienceOn
39 Sund, J., Alenius, H., Vippola, M., Savolainen, K., and Puustinen, A. (2011). Proteomic Characterization of Engineered Nanomaterial-Protein Interactions in Relation to Surface Reactivity, ACS Nano, 5(6), pp. 4300-4309.   DOI
40 United States Environmental Protection Agency (U.S.EPA). (2007). Nanotechnology White Paper, EPA 100/B-07/001, United States Environmental Protection Agency, Washington, D.C 20460, pp. 5-11.