DOI QR코드

DOI QR Code

A Review of Nanomaterials in Cement-Based Composite

  • LI, MAO (Department of Architectural Engineering, Kongju National University) ;
  • Kim, Jin-Man (Department of Architectural Engineering, Kongju National University)
  • 이무 (공주대학교 건축공학과) ;
  • 김진만 (공주대학교 건축공학과)
  • Received : 2019.05.31
  • Accepted : 2019.06.28
  • Published : 2019.06.30

Abstract

This paper reviews the development condition of nanomaterials used in concrete over years. The definitions of nanomaterial, nanotechnology, and nano-concrete are reviewed. The impacts of nanomaterials on cementitious material in the point of advantages and disadvantages are analyzed. Moreover, this paper analyzes and classifies the nanomaterials into the extra quality enhancement and modification to plain cementitious composite. Indeed, the outstanding properties of the embedded nanomaterials can be introduced to concrete such as the mechanical improvement, pore structure refinement, hydrate acceleration, and smartness modifying of self-cleaning, and/or self-sensing. Before the full potential of nanotechnology can be realized in concrete applications, various techniques have to be solved including proper dispersion, compatibility of the nanomaterials in cement, processing, manufacturing, safety, handling issues, scale-up, cost, the impact on the environment and human health.

Keywords

GSJHDK_2019_v7n2_174_f0001.png 이미지

Fig. 1. Illustration of the “top-down” and “bottom-up” approaches in nanotechnology. Adapted from Sobolev and Gutiérrez 2005

GSJHDK_2019_v7n2_174_f0002.png 이미지

Fig. 2. Characteristics of nano-SiO2 particles. Adaped from Jo et al.(2007)

GSJHDK_2019_v7n2_174_f0003.png 이미지

Fig. 3. Properties of MWCNT illustrated by SEM

GSJHDK_2019_v7n2_174_f0004.png 이미지

Fig. 4. Representation of (a) graphene, (b) graphene oxide (GO), (c) reduced graphene oxide (rGO) and (d) graphene nanoplatelets (GNPs). Adapted from Vinayan(2016)

GSJHDK_2019_v7n2_174_f0005.png 이미지

Fig. 5. TEM image of nano-BN: (a) 120nm; (b) 500nm; (c) 1μm. Adapted from Zhang(2018)

References

  1. Li, H., Xiao, H.G., Ou, J.P. (2004). A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cement and Concrete Research, 34(3), 435-438. https://doi.org/10.1016/j.cemconres.2003.08.025
  2. Alberti, M.G., Enfedaque, A., Galvez, J.C. (2017). Fiber reinforced concrete with a combination of polyolefin and steel-hooked fibers, Composite Structures, 171(1), 317-325. https://doi.org/10.1016/j.compstruct.2017.03.033
  3. Lin, C., Wei, W., Hu, Y.H. (2016). Catalytic behavior of graphene oxide for cement hydration process, Journal of Physics and Chemistry of Solids, 89, 128-133. https://doi.org/10.1016/j.jpcs.2015.11.002
  4. Sanchez, F., Sobolev, K. (2010). Nanotechnology in concrete-a review, Construction and Building Materials, 24(11), 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
  5. Jennings, H.M., Bullard, J.W., Thomas, J.J., Andrade, J.E., Chen, J.J., Scherer, G.W. (2008). Characterization and modeling of pores and surfaces in cement paste: correlations to processing and properties, Journal of Advanced Concrete Technology, 6(1), 5-29. https://doi.org/10.3151/jact.6.5
  6. Sanchez, F., Borwankar, A. (2010). Multi-scale performance of carbon microfiber reinforced cement-based composites exposed to a decalcifying environment, Materials Science and Engineering: A, 527(13-14), 3151-3158. https://doi.org/10.1016/j.msea.2010.01.084
  7. Singh, N.B., Kalra, M., Saxena, S.K. (2017). Nanoscience of Cement and Concrete, Materialstoday: Proceedings, 4(4), 5478-5487.
  8. Abdoli, H., Farnoush, H.R., Asgharzadeh, H., Sadrnezhaad, S.K. (2011). Effect of high energy ball milling on compressibility of nanostructured composite powder, Powder Metallurgy, 54(1), 24-29. https://doi.org/10.1179/003258909X12573447241662
  9. Drexler, K.E., Peterson, C., Pergamit, G. (1991). Unbounding the Future: the Nanotechnology Revolution, William Morrow and Company, New York.
  10. Jankowska, E., Zatorski, W. (2009). Emission of nanosize particles in the process of nanoclay blending, in: Third International Conference on Quantum, Nano and Micro Technologies.
  11. Sobolev, K., Gutierrez, M.F. (2005). How nanotechnology can change the concrete world: Part 1, American Ceramic Society Bulletin, 84(11), 113-116.
  12. Norhasri, M.M., Hamidah, M.S., Fadzil, A.M. (2017). Applications of using nano material in concrete: A review, Construction and Building Materials, 133(15), 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005
  13. Feynman, R.P. (1960). There's plenty of room at the bottom(reprint from speech given at annual meeting of the american physical society), Engineering and Science, 23, 22-36.
  14. NSTC. (2007). The National Nanotechnology Initiative - Strategic Plan, December 2007. Executive Office of the President of the United States.
  15. Hanus, M.J., Harris, A.T. (2013). Nanotechnology innovations for the construction industry, Progress in Materials Science, 58(7), 1056-1102. https://doi.org/10.1016/j.pmatsci.2013.04.001
  16. Bjornstrom, J., Martinelli, A., Matic, A., Borjesson, L., Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement, Chemical Physics Letters, 392(1-3), 242-248. https://doi.org/10.1016/j.cplett.2004.05.071
  17. Lin, K.L., Chang, W.C., Lin, D.F., Luo, H.L., Tsai, M.C. (2008). Effects of nano-$SiO_2$ and different ash particle sizes on sludge ash-cement mortar, Journal of Environmental Management, 88(4), 708-714. https://doi.org/10.1016/j.jenvman.2007.03.036
  18. Jo, B.W., Kim, C.H., Tae, G.H., Park, J.B. (2007). Characteristics of cement mortar with nano-$SiO_2$ particles, Construction and Building Materials, 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  19. Ding, S., Ruan, Y., Yu, X., Han, B., Ni, Y.Q. (2019). Self-monitoring of smart concrete column incorporating CNT/NCB composite fillers modified cementitious sensors, Construction and Building Materials, 201, 127-137. https://doi.org/10.1016/j.conbuildmat.2018.12.203
  20. Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P. (2010). Highly dispersed carbon nanotube reinforced cement based materials, Cement and Concrete Research, 40(7), 1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015
  21. Chuah, S., Pan, Z., Sanjayan, J.G., Wang, C.M., Duan, W.H. (2014). Nano reinforced cement and concrete composites and new perspective from graphene oxide, Construction and Building Materials, 73, 113-124. https://doi.org/10.1016/j.conbuildmat.2014.09.040
  22. Al-Rub, R.K.A., Ashour, A.I., Tyson, B.M. (2012). On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites, Construction and Building Materials, 35, 647-655. https://doi.org/10.1016/j.conbuildmat.2012.04.086
  23. Liu, Q., Zhao, H.Q., Li, L., He, P.P., Wang, Y.X., Yang, H.Y., Hu, Z.H., Mu. Y. (2018). Effect of surface modification on carbon nanotubes (CNTs) catalyzed nitrobenzene reduction by sulfide, Journal of Hazardous Materials, 357, 235-243. https://doi.org/10.1016/j.jhazmat.2018.05.060
  24. Ismael, R., Silva, J.V., Carmo, R.N.F., Soldado, E., Lourenco, C., Costa, H., Julio, E. (2016). Influence of nano-$SiO_2$ and nano-$Al_2O_3$ additions on steel-to-concrete bonding, Construction and Building Materials, 125, 1080-1092. https://doi.org/10.1016/j.conbuildmat.2016.08.152
  25. Ortega-Villar, R., Lizarraga-Mendiola, L., Coronel-Olivares, C., Lopez-Leon, L.D., Bigurra-Alzati, C.A., Vazquez-Rodriguez, G.A. (2019). Effect of photocatalytic $Fe_2O_3$ nanoparticles on urban runoff pollutant removal by permeable concrete, Journal of Environmental Management, 242, 487-495. https://doi.org/10.1016/j.jenvman.2019.04.104
  26. Han, B., Li, Z., Zhang, L., Zeng, S., Yu, X., Han, B., Ou, J. (2017). Reactive powder concrete reinforced with nano $SiO_2$-coated $TiO_2$, Construction and Building Materials, 148, 104-112. https://doi.org/10.1016/j.conbuildmat.2017.05.065
  27. Vallee, F. (2004). Cementitious materials for self-cleaning and depolluting facade surfaces, RILEM International Symposium on Environment-Conscious Materials and Systems for Sustainable Development, 337-346.
  28. Ghafari, E., Costa, H., Julio, E. (2015). Review on eco-efficient ultra high performance concrete enhanced with nano-materials, Construction and Building Material, 101, 201-208. https://doi.org/10.1016/j.conbuildmat.2015.10.066
  29. Lee, B.Y., Jayapalan, A.R., Kurtis, K.E. (2013). Effects of nano-$TiO_2$ on properties of cement-based materials, Magazine of Concrete. Research, 65(21), 1293-1302. https://doi.org/10.1680/macr.13.00131
  30. Vohra, M.S., Tanaka, K. (2003). Photocatalytic degradation of aqueous pollutants using silica-modified $TiO_2$, Water Research, 37(16), 3992-3996. https://doi.org/10.1016/S0043-1354(03)00333-6
  31. Jayapalan A.R., Lee B.Y., Kurtis K.E. (2009). Effect of Nano-sized Titanium Dioxide on Early Age Hydration of Portland Cement, In Nanotechnology in Construction 3 Springer, Berlin, Heidelberg
  32. Meng, T., Yu, Y., Qian, X., Zhan, S., Qian, K. (2012). Effect of nano-$TiO_2$ on the mechanical properties of cement mortar, Construction and Building. Materials, 29, 241-245. https://doi.org/10.1016/j.conbuildmat.2011.10.047
  33. Haruehansapong, S., Pulngern, T., Chucheepsakul, S. (2014). Effect of the particle size of nano silica on the compressive strength and the optimum replacement content of cement mortar containing nano-$SiO_2$, Construction and Building Materials, 50, 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002
  34. Nazari, A., Riahi, S., Riahi, S., Shamekhi, S.F., Khademno, A. (2010). Improvement the mechanical properties of the cementitious composite by using $TiO_2$ nanoparticles, Journal of American Science, 6(4), 98-101.
  35. Li, H., Zhang, M.H., Ou, J.P. (2007). Flexural fatigue performance of concrete containing nano-particles for pavement, International Journal of Fatigue, 29(7), 1292-1301. https://doi.org/10.1016/j.ijfatigue.2006.10.004
  36. Li, Z., Wang, H., He, S., Lu, Y., Wang, M. (2006), Investigations on the preparation and mechanical properties of the nanoalumina reinforced cement composite, Materials Letters, 60(3), 356-359. https://doi.org/10.1016/j.matlet.2005.08.061
  37. Ortega-Villar, R., Lizarraga-Mendiola, L., Coronel-Olivares, C., Lopez-Leon, L.D., Bigurra-Alzati, C.A., Vazquez-Rodriguez, G.A. (2019). Effect of photocatalytic $Fe_2O_3$ nanoparticles on urban runoff pollutant removal by permeable concrete, Journal of Environmental Management, 242, 487-495. https://doi.org/10.1016/j.jenvman.2019.04.104
  38. Jo, B.W., Kim, C.H., Tae, G.H., Park, J.B. (2007). Characteristics of cement mortar with nano-$SiO_2$ particles, Construction and Building Materials, 21, 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  39. Li, H, Xiao, H.G., Yuan, J., Ou, J. (2004). Microstructure of cement mortar with nano-particles, Composites Part B: Engineering, 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  40. Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-$SiO_2$, Cement and Concrete Research, 35(10), 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004
  41. Richardson, I.G. (2004). Tobermorite/jennite- and tobermorite/ calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, ${\beta}$-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cement and Concrete Research, 34(9), 1733-1777. https://doi.org/10.1016/j.cemconres.2004.05.034
  42. Jo, B.W., Kim, C.H., Tae, G.H., Park, J.B. (2007). Characteristics of cement mortar with nano-$SiO_2$ particles, Construction and Building Materials, 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  43. Kroyer, H., Lindgreen, H., Jacobsen, H.J., Skibsted, J. (2003). Hydration of Portland cement in the presence of clay minerals studied by 29Si and 27Al MAS NMR spectroscopy, Advanced Cement Research, 15(3), 103-112. https://doi.org/10.1680/adcr.2003.15.3.103
  44. Lindgreen, H., Geiker, M., Kroyer, H., Springer, N., Skibsted, J. (2008). Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates, Cement and Concrete Composites, 30(8), 686-699. https://doi.org/10.1016/j.cemconcomp.2008.05.003
  45. Korb, J.P. (2009). NMR and nuclear spin relaxation of cement and concrete materials, Current Opinion in Colloid Interface Science, 14(3), 192-202. https://doi.org/10.1016/j.cocis.2008.10.004
  46. Beaudoin, J.J., Raki, L., Alizadeh, R. (2009). A 29Si MAS NMR study of modified C-S-H nanostructures, Cement and Concrete Composites, 31(8), 585-590. https://doi.org/10.1016/j.cemconcomp.2008.11.004
  47. Skibsted, J., Hall, C. (2008). Characterization of cement minerals, cements and their reaction products at the atomic and nano scale, Cement and Concrete Research, 38(2), 205-225. https://doi.org/10.1016/j.cemconres.2007.09.010
  48. Poulsen, S.L., Kocaba, V., Le Saoût, G., Jakobsen, H.J., Scrivener, K.L., Skibsted, J. (2009). Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: effects of paramagnetic ions, Solid State Nuclear Magnetic Resonance, 36(1), 32-44. https://doi.org/10.1016/j.ssnmr.2009.05.001
  49. Cong, X., Kirkpatrick, R.J. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate, Advanced Cement Based Materials, 3(3-4), 144-156. https://doi.org/10.1016/1065-7355(96)00023-5
  50. Richardson, I.G. (1999). The nature of C-S-H in hardened cements, Cement and Concrete Research, 29(8), 1131-1147. https://doi.org/10.1016/S0008-8846(99)00168-4
  51. Korb, J.P., Monteilhet, L., McDonald, P.J., Mitchell, J. (2007). Microstructure and texture of hydrated cement-based materials: a proton field cycling relaxometry approach, Cement and Concrete Research, 37(3), 295-302. https://doi.org/10.1016/j.cemconres.2006.08.002
  52. Nonat. A. (2004). The structure and stoichiometry of C-S-H, Cement and Concrete Research, 34(9), 1521-1528. https://doi.org/10.1016/j.cemconres.2004.04.035
  53. Makar, J., Margeson, J., Luh, J. (2005). Carbon nanotube/cement composites-early results and potential application. In: Banthia N, Uomoto T, Bentur A, Shah SP, editors. Proceedings of 3rd international conference on construction materials: performance, innovations and structural implications, 1-10.
  54. Li, G.Y., Wang, P.M., Zhao, X. (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement and Concrete Composite, 29(5), 377-82. https://doi.org/10.1016/j.cemconcomp.2006.12.011
  55. Xie, X.L., Mai, Y.W., Zhou, X.P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: a review, Materials Science and Engineering: R: Reports, 49(4), 89-112. https://doi.org/10.1016/j.mser.2005.04.002
  56. Kang I, Heung, Y.Y., Kim, J.H., Lee, J.W., Gollapudi, R., Subramaniam, S., Narasimhadenara, S., Hurd, D., Kirikera, G.R., Shanov, V., Schulz, M.J., Shi, D., Boerio, J., Mall, S., Ruggles-Wren, M. (2006). Introduction to carbon nanotube and nanofiber smart materials, Composites Part B: Engineering, 37(6), 382-394. https://doi.org/10.1016/j.compositesb.2006.02.011
  57. Xu, S., Liu, J., Li, Q. (2015). Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste, Construction and Building Materials, 76, 16-23. https://doi.org/10.1016/j.conbuildmat.2014.11.049
  58. Kim, H.K., Nam, I.W., Lee, H.K. (2012). Microstructure and mechanical/EMI shielding characteristics of CNT/cement composites with various silica fume contents, UKC 2012 on science, technology, and entrepreneurship.
  59. Musso, S., Tulliani, J.M., Ferro, G., Tagliaferro, A. (2009). Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Composite Science and Technology, 69(11-12), 1985-1990. https://doi.org/10.1016/j.compscitech.2009.05.002
  60. Kim, G.M., Park, S.M., Ryu, G.U., Lee, H.K. (2017). Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber, Cement and Concrete Composites, 82, 165-175. https://doi.org/10.1016/j.cemconcomp.2017.06.004
  61. Nam, I.W., Lee, H.K., Jang, J.H. (2011). Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites, Composites Part A: Applied Science and Manufacturing, 42(9), 1110-1118. https://doi.org/10.1016/j.compositesa.2011.04.016
  62. Li, G.Y., Wang, P.M., Zhao, X. (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement and Concrete Composite, 29(5), 377-382. https://doi.org/10.1016/j.cemconcomp.2006.12.011
  63. Stallings, J.M., Cousins, T.E., Stafford, T.E. (1996). Effects of Removing Diaphragms from Steel Girder Bridge, Transportation Research Record, 1541(1), 183-188. https://doi.org/10.1177/0361198196154100124
  64. Yang, X., Zhu, J., Qiu, L., Li, D. (2011). Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors, Advanced Materials, 23(25), 2833-2838. https://doi.org/10.1002/adma.201100261
  65. Vinayan, B.P. (2016). Heteroatom-doped graphene-based hybrid materials for hydrogen energy conversion, Recent Advances in Graphene Research.
  66. Alkhateb, H., Al-Ostaz, A., Cheng, A.H.D., Li, X. (2013). Materials genome for graphene-cement nanocomposites, Journal of Nanomechanics and Micromechanics, 3(3), 67-77. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000055
  67. Rhee, I., Lee, J.S., Kim, Y.A., Kim, J.H., Kim, J.H. (2016). Electrically conductive cement mortar: incorporating rice husk-derived high-surface-area graphene, Construction and Building Materials, 125, 632-642. https://doi.org/10.1016/j.conbuildmat.2016.08.089
  68. Zhang, W., Han, B., Yu, X., Ruan, Y., Ou, J. (2018). Nano boron nitride modified reactive powder concrete, Construction and Building Materials, 179, 186-197. https://doi.org/10.1016/j.conbuildmat.2018.05.244
  69. Saggar, R., Porwal, H., Tatarko, P., Dlouhy, I., Reece, M. J. (2015). Boron nitride nanosheets reinforced glass matrix composites, Advances in Applied Ceramics, Structural, Functional and Bioceramics, 114,
  70. Li, Y., Yin, J., Wu, H., Deng, H., Chen, J., Yan, Y., Liu, X., Huang, Z., Jiang, D. (2015). Enhanced electrical resistivity in SiC-BN composites with highly-active BN nanoparticles synthesized via chemical route, Journal of the European Ceramic Society, 35(5), 1647-1652. https://doi.org/10.1016/j.jeurceramsoc.2014.11.016
  71. Rafiee, M.A., Narayanan, T.N., Hashim, D.P., Sakhavand, N., Shahsavari, R., Vajtai, R., Ajayan, P.M. (2013). Hexagonal boron nitride and graphite oxide reinforced multifunctional porous cement composites, Advanced. Functional Materials, 23(45), 5624-5630. https://doi.org/10.1002/adfm.201203866
  72. Zhang, W., Han, B., Yu, X., Ruan, Y., Ou, J. (2018). Nano boron nitride modified reactive powder concrete, Construction and Building Materials, 179, 186-197. https://doi.org/10.1016/j.conbuildmat.2018.05.244