• Title/Summary/Keyword: Manual material handling

Search Result 47, Processing Time 0.03 seconds

A study on compression force at L5/Sl in MMH -Erector Spinae Muscle Electromyography about Lifting Distance- (중량물 인양작업에 있어서의 요추부하 평가에 관한 연구 -수평거리에 따른 척추기립근의 근전도 변화-)

  • Choi, Jeong-Hwa;Yang, Seong-Hwan;Park, Beom
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.303-310
    • /
    • 1999
  • MMH(Manual Material Handling)와 관련되어 최근 요통질환으로 인한 요양신청이 크게 증가하는 추세에 있다. 본 연구에서는 Lifting 작업시 적용되는 중요 요소들 중 수평거리가 변함에 따른 IEMG 값을 이용하여 EMG 변화를 살펴보았다. 좌ㆍ우 EMG 값간에는 유의한 차이가 없었으며, 수평거리 35cm와 55cm간에는 유의한 차이를 보였다. 이는 수평거리가 길어질 경우 척추기립근의 동원량이 증가한다는 것을 의미한다. 따라서 요추부의 부담도를 줄이기 위해 수평거리를 줄이는 것이 요통예방을 위해 무엇보다 중요한 것이라 하겠다. 인체측정치와 EMG 값 사이의 상관관계에서는 35cm일 때 키, 가슴둘레, 허리둘레 등이, 55cm일 때 체중, 몸통너비, 허리두께, 손바닥폭 등이 상관관계가 있는 것으로 나타나고 있다.

  • PDF

Development of a Product Arrangement Scheduling System for Plant Industry (플랜트 생산공장의 제품별 작업장사용계획시스템 개발)

  • Koh, Shie-Gheun;Chae, Young-Myung
    • IE interfaces
    • /
    • v.13 no.2
    • /
    • pp.266-272
    • /
    • 2000
  • This paper deals with a computer-aided product arrangement system in the plant industry. The arrangement schedule may be performed manually. But this is inadaptable to change and difficult to store the results, which eventually requires time consuming and ineffective works. Using computerbased scheduling system, problems mentioned above can be resolved. In the system, the products can be arranged in a workarea with an automatic algorithm as well as manual operation using mouse dragging. In the automatic scheduling algorithm, the position of a product is determined by considering the existing products and material handling costs. Then the scheduled results are stored in DB and can be manipulated at any time.

  • PDF

Development of FPC Vision Aligning Mounter with Two Picker Heads (2개의 헤드를 갖는 FPC 비전 정렬 장착기의 개발)

  • Shin Dong-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.390-393
    • /
    • 2005
  • he FPCs(Flexible Printed Circuit) are currently used in several electronic products like digital cameras, cellular phones because of flexible material characteristics. Because the FPC is usually small size and flexible, only one FPC should not enter chip mounting process, instead, several FPCs is placed on the large rigid pallette and go to the chip mounting process. Currently the job of mounting FPC on the pallette is carried by totally manual way. Thus, the goals of the research is develop the automatic machine of FPC mounting on pallette using vision alignment. The procedure of operating machine is firstly to measure alignment error of FPC, correct alignment errors, and finally mount well-aligned FPC on the pallette. The vision technology is used to measure alignment error accurately, and precision motion control is used in correcting errors nd mounting FPC. The two picker heads handling two FPC together is used to increase the productivity.

  • PDF

Biomechanical model of pushing and pulling

  • Lee, K.S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.3-9
    • /
    • 1982
  • This study demonstrates that certain personal and task factors can be modelled to predict slip potential as well as back loadings durings dynamic pushing and pulling tasks. Such tasks are com- mon to many manual material handling jobs in industry and the results of this work will hopefully be of use in improved job design. The objective of this research is to formulate and validate a dynamic biomechanical model of pushing and pulling a cart. For pushing and pulling tasks, the model can : (1) estimate foot forces for given hand forces, and (2) estimate tors muscle and vertabral column loadings. In order to formulate and validate the model, experiments involving pushing and pulling of a cart were performed. These experiments produced data of the following type : (1) dynamic forces on the feet, (2) hand forces required to move the cart, (3) body motions as functions of various cart motion and (4) back muscle actions. The model was validated using three different methods; precision was tested using correlation between predicted and measured results, accuracy using standard error between of predicted and measured results, and intuitive comparison of predicted results using sensitivity analyses.

  • PDF

Assessment of Ergonomic Risk Factors of Manual Material Handling in the Ship Diesel Engine Assembling Processes (모 선박용 디젤엔진 제조업체 들기작업의 인간공학 위험요인 평가)

  • Kim, Boo Wook;Kim, Sun Ja;Shin, Yong Chul;Kim, Hyun Dong;Woo, Ji Hoon;Kang, Dong mug;Lee, Hyun seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.153-159
    • /
    • 2005
  • The purpose of this study was to assess the ergonomic risks of lifting tasks in a marine diesel engine manufacturing industry using the National Institute for Occupational Safety and Health(NIOSH) Revised Lifting Equation(NLE). Average Lifting Index(LI=Weight of Load/Recommended Weight Limit) of a total number of 45 lifting tasks was $1.6{\pm}0.7$. The LIs were above 1 at 34 tasks(75.6%), and above 2 at 11 tasks(24.4%). Parts management showed the highest average LI value (LI=2.3) in all departments, which resulted from high frequency and heave load of lifting. The common and significant ergonomic risk factors in the processes were the heavy weight of diesel engine parts and the long horizontal distance. In addition, some lifting tasks had such potential risk factors as the long vertical distance, the high frequency of lifts or the long work duration.

Improvement of Ammunition Box by Ergonomic Evaluation

  • Lee, Kyung-Sun;Kim, Sung-Hoon;Seo, Song-Won;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Objective: The purpose of this paper is to evaluate old and newly designed ammunition boxes from an ergonomic point of view. Background: The ammunition boxes made of wood, which are currently used by the military, have some difficulties such as corrosion and damage of ammunition, environmental pollution, and stock management. Also, damages to the wooden ammunition boxes take place frequently, because soldiers carry them manually. Method: Sixteen participants volunteered to randomly perform lifting, carrying, and side-by-side moving tasks with 4 different old and new boxes, respectively for the ammunitions of 5.56mm, 60mm, 81mm, and 105mm in diameter. The old boxes are made of wood and are currently used in the military, while the new boxes are made of plastics. The joint moments of the elbow, shoulder, back, and knee were measured by using a motion analysis system and force platforms. In addition, an electromyographic system was used to measure the forces of hand and wrist muscles. Results: In most tasks, new boxes caused less joint moments at the elbow and shoulder than old boxes, because the new boxes were lighter and smaller than the old boxes. New boxes also derived less hand and wrist muscle forces due to the provision of fixed hard handles rather than string handles. Conclusion: The ergonomically designed new boxes could reduce the physical stresses of soldiers manually handling ammunitions and be helpful for storage and reuse. Application: This study shows an ergonomic application example for product development and evaluation.

A Simulation Study for Detailed Design of A-Mart Logistics Center for Low Temperature Products (A-마트 저온제품 종합물류센터 실시설계를 위한 시뮬레이션)

  • Jeon, Byoung-Hack;Jang, Seong-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.143-151
    • /
    • 2006
  • This paper deals with the simulation model for design and operations of A-Mart logistic center for low temperature products. In developed simulation model, receiving docks, digital classification system (DCS), shipping docks, material handling devices and manual sorting stations are considered. Five types of cargo such as fruits, palletized fruits, delicatessen and fisheries, vegetables and refrigerated cargoes are considered. The simulation model and process animation are developed using the simulation package ARENA. Among various design and operation alternatives consisting of the number of workers of receiving dock, allocation of receiving docks by cargo types, DCS capacity, the number of folk-lift, the number of manual sorting operators and overall layout, the best alternatives of each subsystem are selected by simulation analysis. The major performance measures such as DCS throughput, utilization of operators at each station, receiving docks utilization and folk-lift utilization are considered for the alternative evaluation.

  • PDF

A Psychophysical Approach on the Assessment of Lifting Loads (정신물리학적 접근방법을 이용한 들기작업의 작업하중 평가에 관한 연구)

  • Park, Hyun Jin;Ock, Minwoo;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.96-100
    • /
    • 2012
  • Low back pain (LBP) is a major issue in modern industrialized society which is mainly caused by manual material handling (MMH) tasks. The objective of this study was to provide scientific data for establishing work standard for Korean workers throughout the laboratory experiment including some specific lifting tasks. Thirty male college students were recruited as participants. The maximum voluntary contraction (MVC), recommended weight limit (RWL), and psychophysical safety weight using Borg's CR-10 scale were studied. Results showed that the RWL was 8.4% MVC higher than the proposed psychophysical safety weight. Based on this result, it is suggested that the NIOSH lifting equation (NLE) should not be directly applied to Korean without reasonable modifications. The ratio of psychophysical safety weight to MVC was ranged from 20.1 to 26.4%. It is expected that use of the methodology in this study may provide better expectation of the work ability of Korean for reducing lower back pains caused by MMH.

Study on the Lowest Cost Analysis of Steel Plates for Stiffener Installed on the Side Wall of LNG Tank (LNG내부탱크 Stiffener 판재 비용의 최소화 분석 연구)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The analysis of the cost optimization and the total demand weight of 9% Ni-steel plates for installing shell stiffeners in the side wall of the large capacity LNG storage tank are carried out in order to reduce the costs of the plates for stiffeners. This study can be possible for developing the calculation program which evaluates the bill-of-material for stiffeners to reduce the manual calculation time of tank designer, and to enable the estimation of weight and cost for various plate width. The results show that the demand weight and cost are reduced as the plate width is wider. Nevertheless, both the weight and the cost with plate width for stiffeners should be compared and evaluated to obtain the optimum cost time to time because of various cost incremental factors of plates such as transportation and handling cost, etc.

Psychophysical and Physiological Study on Various Lifting Tasks (여러 가지 들기 작업에서의 인체심리학적 · 생리학적 연구)

  • Yun, Hun-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.11-22
    • /
    • 2006
  • The muscular-skeletal disorders(MSDs) that have become a major issue recently in Korean industrial safety area are mainly caused by manual material handling task. The objective of this study is to provide scientific data for the establishment of work safety standard for Korean workers through the experiments of lifting task under various conditions, in order to prevent the muscular-skeletal disorders in the industrial work site. Eight male college students were recruited as participants. Three different lifting frequencies(1, 3, 5 lifts/min) and three twisting angles(including the sagittal plane and two asymmetric angles; i.e., 0°, 45°, 90°) for symmetric and asymmetric tasks, respectively, with three lifting range from floor to knuckle height, knuckle to shoulder, floor to shoulder height for one hour's work shift using free style lifting technique were studied. The maximum acceptable weight of load(MAWL) was determined under the different task conditions, and the oxygen consumption, heart rate, and RPE were measured or recorded while subjects were lifting their MAWLs. The results showed that: (1) The MAWLs were significantly decreased as the task frequency and task angle increased.; (2) The heart rate, oxygen consumption, RPE significantly increased with an increase in lifting frequency although maximum acceptable weight of lift decreased.; (3) The highest heart rate and oxygen consumption was recorded at the lifting range of floor to shoulder, followed by floor to knuckle and knuckle to shoulder.; (4) The RPE value showed that subjects perceived more exertion at the high frequency rate of lifting task and lifting range of floor to shoulder height. (5) The modeling for MAWL using isometric strength, task angle and lifting frequency were developed. It is expected that use of the results provided in this study may prove helpful in reducing MMH hazards, especially from lifting tasks for Korean, and can be used as a basis for pre-employment screening.