• Title/Summary/Keyword: Malicious Document Detection

Search Result 12, Processing Time 0.023 seconds

MS Office Malicious Document Detection Based on CNN (CNN 기반 MS Office 악성 문서 탐지)

  • Park, Hyun-su;Kang, Ah Reum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.439-446
    • /
    • 2022
  • Document-type malicious codes are being actively distributed using attachments on websites or e-mails. Document-type malicious code is relatively easy to bypass security programs because the executable file is not executed directly. Therefore, document-type malicious code should be detected and prevented in advance. To detect document-type malicious code, we identified the document structure and selected keywords suspected of being malicious. We then created a dataset by converting the stream data in the document to ASCII code values. We specified the location of malicious keywords in the document stream data, and classified the stream as malicious by recognizing the adjacent information of the malicious keywords. As a result of detecting malicious codes by applying the CNN model, we derived accuracies of 0.97 and 0.92 in stream units and file units, respectively.

Detection of Malicious PDF based on Document Structure Features and Stream Objects

  • Kang, Ah Reum;Jeong, Young-Seob;Kim, Se Lyeong;Kim, Jonghyun;Woo, Jiyoung;Choi, Sunoh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.85-93
    • /
    • 2018
  • In recent years, there has been an increasing number of ways to distribute document-based malicious code using vulnerabilities in document files. Because document type malware is not an executable file itself, it is easy to bypass existing security programs, so research on a model to detect it is necessary. In this study, we extract main features from the document structure and the JavaScript contained in the stream object In addition, when JavaScript is inserted, keywords with high occurrence frequency in malicious code such as function name, reserved word and the readable string in the script are extracted. Then, we generate a machine learning model that can distinguish between normal and malicious. In order to make it difficult to bypass, we try to achieve good performance in a black box type algorithm. For an experiment, a large amount of documents compared to previous studies is analyzed. Experimental results show 98.9% detection rate from three different type algorithms. SVM, which is a black box type algorithm and makes obfuscation difficult, shows much higher performance than in previous studies.

A Study on Email Security through Proactive Detection and Prevention of Malware Email Attacks (악성 이메일 공격의 사전 탐지 및 차단을 통한 이메일 보안에 관한 연구)

  • Yoo, Ji-Hyun
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.672-678
    • /
    • 2021
  • New malware continues to increase and become advanced by every year. Although various studies are going on executable files to diagnose malicious codes, it is difficult to detect attacks that internalize malicious code threats in emails by exploiting non-executable document files, malicious URLs, and malicious macros and JS in documents. In this paper, we introduce a method of analyzing malicious code for email security through proactive detection and blocking of malicious email attacks, and propose a method for determining whether a non-executable document file is malicious based on AI. Among various algorithms, an efficient machine learning modeling is choosed, and an ML workflow system to diagnose malicious code using Kubeflow is proposed.

A Study of Office Open XML Document-Based Malicious Code Analysis and Detection Methods (Office Open XML 문서 기반 악성코드 분석 및 탐지 방법에 대한 연구)

  • Lee, Deokkyu;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.429-442
    • /
    • 2020
  • The proportion of attacks via office documents is increasing in recent incidents. Although the security of office applications has been strengthened gradually, the attacks through the office documents are still effective due to the sophisticated use of social engineering techniques and advanced attack techniques. In this paper, we propose a method for detecting malicious OOXML(Office Open XML) documents and a framework for detection. To do this, malicious files used in the attack and benign files were collected from the malicious code repository and the search engine. By analyzing the malicious code types of collected files, we identified six "suspicious object" elements that are meaningful in determining whether they are malicious in a document. In addition, we implemented an OOXML document-based malware detection framework based on the detection method to classify the collected files and found that 98.45% of malicious filesets were detected.

OLE File Analysis and Malware Detection using Machine Learning

  • Choi, Hyeong Kyu;Kang, Ah Reum
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.149-156
    • /
    • 2022
  • Recently, there have been many reports of document-type malicious code injecting malicious code into Microsoft Office files. Document-type malicious code is often hidden by encoding the malicious code in the document. Therefore, document-type malware can easily bypass anti-virus programs. We found that malicious code was inserted into the Visual Basic for Applications (VBA) macro, a function supported by Microsoft Office. Malicious codes such as shellcodes that run external programs and URL-related codes that download files from external URLs were identified. We selected 354 keywords repeatedly appearing in malicious Microsoft Office files and defined the number of times each keyword appears in the body of the document as a feature. We performed machine learning with SVM, naïve Bayes, logistic regression, and random forest algorithms. As a result, each algorithm showed accuracies of 0.994, 0.659, 0.995, and 0.998, respectively.

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

Efficient Hangul Word Processor (HWP) Malware Detection Using Semi-Supervised Learning with Augmented Data Utility Valuation (효율적인 HWP 악성코드 탐지를 위한 데이터 유용성 검증 및 확보 기반 준지도학습 기법)

  • JinHyuk Son;Gihyuk Ko;Ho-Mook Cho;Young-Kuk Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.71-82
    • /
    • 2024
  • With the advancement of information and communication technology (ICT), the use of electronic document types such as PDF, MS Office, and HWP files has increased. Such trend has led the cyber attackers increasingly try to spread malicious documents through e-mails and messengers. To counter such attacks, AI-based methodologies have been actively employed in order to detect malicious document files. The main challenge in detecting malicious HWP(Hangul Word Processor) files is the lack of quality dataset due to its usage is limited in Korea, compared to PDF and MS-Office files that are highly being utilized worldwide. To address this limitation, data augmentation have been proposed to diversify training data by transforming existing dataset, but as the usefulness of the augmented data is not evaluated, augmented data could end up harming model's performance. In this paper, we propose an effective semi-supervised learning technique in detecting malicious HWP document files, which improves overall AI model performance via quantifying the utility of augmented data and filtering out useless training data.

Forgery Detection Mechanism with Abnormal Structure Analysis on Office Open XML based MS-Word File

  • Lee, HanSeong;Lee, Hyung-Woo
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.47-57
    • /
    • 2019
  • We examine the weaknesses of the existing OOXML-based MS-Word file structure, and analyze how data concealment and forgery are performed in MS-Word digital documents. In case of forgery by including hidden information in MS-Word digital document, there is no difference in opening the file with the MS-Word Processor. However, the computer system may be malfunctioned by malware or shell code hidden in the digital document. If a malicious image file or ZIP file is hidden in the document by using the structural vulnerability of the MS-Word document, it may be infected by ransomware that encrypts the entire file on the disk even if the MS-Word file is normally executed. Therefore, it is necessary to analyze forgery and alteration of digital document through internal structure analysis of MS-Word file. In this paper, we designed and implemented a mechanism to detect this efficiently and automatic detection software, and presented a method to proactively respond to attacks such as ransomware exploiting MS-Word security vulnerabilities.

An Email Vaccine Cloud System for Detecting Malcode-Bearing Documents (악성코드 은닉 문서파일 탐지를 위한 이메일 백신 클라우드 시스템)

  • Park, Choon-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.754-762
    • /
    • 2010
  • Nowadays, email-based targeted attacks using malcode-bearing documents have been steadily increased. To improve the success rate of the attack and avoid anti-viruses, attackers mainly employ zero-day exploits and relevant social engineering techniques. In this paper, we propose an architecture of the email vaccine cloud system to prevent targeted attacks using malcode-bearing documents. The system extracts attached document files from email messages, performs behavior analysis as well as signature-based detection in the virtual machine environment, and completely removes malicious documents from the messages. In the process of behavior analysis, the documents are regarded as malicious ones in cases of creating executable files, launching new processes, accessing critical registry entries, connecting to the Internet. The email vaccine cloud system will help prevent various cyber terrors such as information leakages by preventing email based targeted attacks.

A Classification Model for Attack Mail Detection based on the Authorship Analysis (작성자 분석 기반의 공격 메일 탐지를 위한 분류 모델)

  • Hong, Sung-Sam;Shin, Gun-Yoon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.35-46
    • /
    • 2017
  • Recently, attackers using malicious code in cyber security have been increased by attaching malicious code to a mail and inducing the user to execute it. Especially, it is dangerous because it is easy to execute by attaching a document type file. The author analysis is a research area that is being studied in NLP (Neutral Language Process) and text mining, and it studies methods of analyzing authors by analyzing text sentences, texts, and documents in a specific language. In case of attack mail, it is created by the attacker. Therefore, by analyzing the contents of the mail and the attached document file and identifying the corresponding author, it is possible to discover more distinctive features from the normal mail and improve the detection accuracy. In this pager, we proposed IADA2(Intelligent Attack mail Detection based on Authorship Analysis) model for attack mail detection. The feature vector that can classify and detect attack mail from the features used in the existing machine learning based spam detection model and the features used in the author analysis of the document and the IADA2 detection model. We have improved the detection models of attack mails by simply detecting term features and extracted features that reflect the sequence characteristics of words by applying n-grams. Result of experiment show that the proposed method improves performance according to feature combinations, feature selection techniques, and appropriate models.