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Abstract 
 
With the rapid development of mobile Internet, smart phones have been widely popularized, 
among which Android platform dominates. Due to it is open source, malware on the Android 
platform is rampant. In order to improve the efficiency of malware detection, this paper 
proposes deep learning Android malicious detection system based on behavior features. First 
of all, the detection system adopts the static analysis method to extract different types of 
behavior features from Android applications, and extract sensitive behavior features through 
Term frequency-inverse Document Frequency algorithm for each extracted behavior feature 
to construct detection features through unified abstract expression. Secondly, Long Short-
Term Memory neural network model is established to select and learn from the extracted 
attributes and the learned attributes are used to detect Android malicious applications, Analysis 
and further optimization of the application behavior parameters, so as to build a deep learning 
Android malicious detection method based on feature analysis. We use different types of 
features to evaluate our method and compare it with various machine learning-based methods. 
Study shows that it outperforms most existing machine learning based approaches and detects 
95.31% of the malware. 
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1. Introduction 

By the end of 2018, the market share of Android system in the leading position among global 
mobile terminals has reached 85% [1]. Due to the high openness and extensibility of Android 
system, malware makers can easily develop a large number of malicious software, making 
Android mobile terminals more vulnerable to malware attacks [2]. About 97% of mobile 
malware is developed for Android mobile terminals [3]. In order to prevent and mitigate the 
harm of malware, this paper studies the security of Android mobile applications. 

In order to protect users' privacy [4], researchers at home and abroad have proposed various 
methods. These methods can be divided into static analysis and dynamic analysis [5]. Static 
analysis is to extract the corresponding characteristic information from the source file of the 
program for analysis [6]. The detection process is relatively simple. The overall analysis of the 
program from the global perspective can quickly and efficiently analyze the malware [7], but 
the application cannot be dynamically loaded and the intrusion detection cannot be suddenly 
found when the application is running. In dynamic analysis, the behavior features extracted by 
the application during the running time are compared with malicious samples [8]. In this 
process, a lot of overhead will be generated and the detection efficiency is low. It cannot detect 
the current massive amount of malicious software quickly and effectively. Considering that 
the number of malicious applications is increasing rapidly, this paper adopts the static analysis 
method to analyze the applications on a large scale. 

In recent years, people commonly use machine learning methods to detect malware, such as 
support vector machines (SVM) and Naive Bayes, etc [9]. Moreover, in the field of image 
recognition and voice recognition, deep learning has shown the optimal detection performance 
[10], which has been widely concerned by researchers. Extracting a large number of behavioral 
features from software will contain irrelevant and noisy behavioral features, which will have 
a negative impact on malware detection [11]. we need to screen the extracted behavioral 
features, remove noise and irrelevant data [12] in the data set, and improve the performance 
of the classifier [13]. All in all, researchers have proposed many detection methods based on 
deep learning [14], which only extract feature information from applications, and insufficient 
analysis of the extracted features reduces the accuracy of application detection. It is also 
considered that the use of dynamic analysis causes additional overhead in the detection process, 
such as increasing the time for training the model, occupying a large amount of computing 
resources, etc., and it is impossible to quickly and effectively detect unknown applications. So, 
this paper proposes the detection method of deep learning Android malware based on feature 
analysis. This paper uses static analysis technology to propose the research and design of a 
deep learning Android malicious detection system based on feature weighting. On the one 
hand, it eliminates redundant features that are not related to detection, and enhances the ability 
to distinguish malicious applications to reduce additional overhead. On the other hand, it 
conducts comprehensive detection and analysis of applications, automatically digs deep 
features, and analyzes the information between features to quickly and effectively detect 
Android applications more accurately. The study shows that our method has better 
performance than most existing detection methods, and can detect 95.31% malware with 93.32% 
accuracy. 

In summary, this paper makes the following contributions： 

• Combining the TF-IDF algorithm, consider the importance of each behavior feature 
between malicious and benign applications, and generally consider the degree of association 
of each behavior feature to malicious or benign applications. Reduce the weights that evenly 
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exist in the behavior characteristics of malicious and benign applications, and enhance the 
behavior characteristics specific to malicious and benign applications. 

• We built LSTM models with different network structures to detect Android malware, and 
selected the model structure with the best detection effect to detect Android malware 
through experimental analysis. 

• We assessed our method with 95.31% accuracy using different types of behavioral 
characteristics and compared them with machine learning methods. 

The rest of this paper is organized as follows: Related work is introduced in Section 2. 
Approach we proposed is presented in Section 3. Evaluation and comparison with related 
approaches are presented in Section 4. Section 5 concludes the paper. 

2. Related Work 
In the past years, Android malware detection has been a research area of concern. In order 

to protect personal information from being leaked, many new detection technologies have been 
proposed. At present, researchers at home and abroad mainly detect Android malicious 
applications from static analysis and dynamic analysis [15]. 

Detection method based on static analysis, which carries out static analysis on the code 
extracted from Android application through reverse engineering [16]. AppFA [17] evaluates 
the network behavior of the application and similar applications by selecting similar 
applications and setting a threshold. It can only roughly discriminate the detection applications, 
and how to choose appropriate similar applications is also a challenge. APK Auditor [18] is 
only grading the application based on authority to assess the threat level of the application, but 
the grading basis is too simple, and there is no effective feature learning method for mass 
behavioral features. Dini G et al. propose a reliability evaluator [19], which uses the analytic 
hierarchy process (AHP) to make multi-standard decision combinations for the application, 
without the need to analyze the code to greatly reduce its complexity. However, only a single 
type of attribute is selected to detect Android malware, which cannot comprehensively reflect 
the behavior features of malicious applications and only provides a reference for users. 
DroidDet [20] adopts a combination of multiple types of features and machine learning to 
conduct classification and detection of malware through cross validation, which reduces the 
cost of detection of malware, but cannot automatically select and learn behavioral features. 
Karina et al. [21] construct the permission map be required by the software and evaluated it 
according to the performance index of the central permission build in the permission map. This 
method cannot effectively evaluate unknown malicious applications accurately. 

Detection method based on dynamic analysis. This method extracts various dynamic 
behavior features for analysis at application runtime. Rehman et al. [22] make a dynamic 
analysis on the basis of Sato et al. [23] research and combined it with machine learning 
algorithm to detect the application. However, it increased the extra cost and occupied a lot of 
resources to detect Shabtai et al. [24] analyze applications on the PC side, obtain various 
features and events from mobile devices, and combine with classification algorithm to detect 
unknown applications. However, detection is inefficient and requires considerable time to 
collect resources. TaintDroid [25] uses the private data as the source of pollution to analyze 
the private data with dynamic stains, and tracks multiple private data sources at the same time. 
However, during the detection process, a large amount of resources are occupied by the phone, 
which cannot provide an accurate security assessment. MalAware [26] dynamically monitors 
the memory and CPU usage of the application, and adopts Logistic Regression algorithm to 
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detect malicious softwares. 
According to the current research situation, the traditional detection methods are all 

shallow structures, which do not have the ability to automatically select and learn massive 
behavioral features. However, Deep Neural Networks has shown advanced performance in 
image recognition and other fields. Therefore, the application of deep learning detection has 
been studied. Hasegawa et al. [27] use one-dimensional CNN to analyze a small part of 
information of APK to reduce the resource overhead of detecting malware. DeepClassifyDroid 
[28] uses convolutional neural network to classify and detect the feature set extracted from 
static analysis, which increased the cost of detection application and affected the effect of 
detection. This model greatly increases the cost of resources.  

In recent literature, a lot of deep learning has been applied to identifying vulnerable code 
snippets. However, the proposed studies were evaluated based on self-built/collected data sets, 
extracting only feature information from the application and not fully analyzing the extracted 
features, thus reducing the accuracy of application detection [29]. If dynamic analysis is used 
to extract behavioral features, it will result in extra overhead in the detection process, and it 
cannot quickly and effectively detect unknown applications. This paper uses static analysis 
technology to propose a deep learning Android malicious detection system based on behavior 
characteristics. On the one hand, TF-IDF algorithm is used to analyze the extracted massive 
features, remove redundant and irrelevant behavior features, enhance the distinguishing ability 
of Android malicious and improve the accuracy of application detection. On the other hand, 
deep learning is used to transform the behavioral feature representation of application system 
calls into a new feature space for comprehensive detection and analysis of applications. It can 
automatically dig deep features and analyze information between features to detect android 
applications quickly and effectively, making the detection more accurate. 

3. Proposed Approach 
We design and implement a deep learning Android malicious detection method based on 

feature analysis. As shown in Fig. 1, the method is composed of four different modules: 

1. Feature Extraction Module: a wide range of static analysis of applications, from which 
different types of behavioral features are extracted as feature sets through reverse 
engineering. 

2. Feature Analysis Module: In order to eliminate the redundancy and irrelevance of 
behavioral features and improve the detection accuracy of malicious applications, we use 
the TF-IDF algorithm to calculate the importance of each feature to application detection, 
and select and reconstruct the feature vector. 

3. Feature Embedding Module: select features from feature sets of different dimensions 
according to the weight to form a joint feature set and map it to a joint vector space. 

4. Detection Module: the traditional detection model is lack of effective learning ability of 
behavior features, and cannot effectively analyze a large number of behavior features. 
Therefore, we use Long Short-Term Memory neural network (LSTM) to detect and classify 
malware after learning the essential behavior features. 

In the next four sections, we will discuss the details of these modules and provide the necessary 
background information. The Android malicious detection framework is shown in Fig. 1. 
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Fig. 1. Android malicious detection framework 

 

3.1 Feature Extraction Module 
In order to accurately detect Android malicious applications, this paper extracts different 

types of behavior features from Android applications, decompiles the installation files of 
Android applications using APKTOOL to generate the AndroidManifest.xml file, and extracts 
the static behavior features data of Android applications as follows: 

Permission: Permission is one of the most important security mechanisms for Android 
applications. When installing an application, the user selects and authorizes it. Permission will 
provide Android applications with access to different types of security related resources and 
data. For example, if an application requests READ_CONTACTS and SEND_SMS 
permissions, this could mean that the application will send SMS to an attacker when it gets 
your communication information, which leads to a privacy breach. Current research shows 
that Android malicious applications will request more permissions than normal applications 
to obtain more resources and data. This paper will extract the permission list defined in 
Android manifest.xml as the behavior features of analysis. 

Component of Application: There are four main components of Android application, that 
is Activity, Service, Content Provider and Broadcast Receiver. Each Android application can 
declare multiple different types of components in the Android manifest.xml file. Some 
Android malicious applications will quietly run some service processes in the background of 
the system through the service components to perform malicious behaviors. In this paper, we 
extract these component information as the behavior features of Android applications. 

Intent-Filter: The Android system matches the Intent Filter configured by the Android 
application. It considers only three categories: Actions, Data, and Categories. To find the 
component or service that responds to the intent. We collect all the actions and categories in 
the manifest as feature sets, and Android applications declare the corresponding actions and 
categories in the androidmanifest.xml or source code. This mechanism makes it easy for 
Android malicious applications to monitor certain system events and launch malicious 
activities directly after the mobile terminal is restarted. We extract all these Intent-Filter as one 
of our feature sets. 

3.2 Feature Analysis Module 
TF-IDF is a commonly used statistical algorithm that is often used to assess the 

importance of a word to one of the documents in a document library. So we will use the static 
analysis method to extract different types of behavior features from the manifest file, including 
(Permission, Components, and Intent-Filter), and then extract to each behavioral feature is 
analyzed. The weight of each behavior feature is calculated by TF-IDF, and the importance of 
each behavioral feature to malware detection is evaluated to screen the features. The specific 
description is as follows: 
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We divided the collected application set into malicious application set M and benign 
application set B . Let iN  be the number of times each behavior trait i is invoked for 
application set M or B . N is the total number of times that application for application set B
or M  invokes all behavioral features. Then iTF  represents the frequency of invocation of a 
behavior feature in application, and its definition formula is as follows: 
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We define MD  and BD  as the total number of applications in the M  and B  training 

set respectively, ( ),i MD  and ( ),i BD  are the invocation behavior characteristics of the number 

of malicious and benign applications respectively, ( ),i BIDF  and ( ),i MIDF  as the number of 
applications in the system call behavior features divided by the logarithm of the total number 
of benign and malicious applications in the training set. The definition formula is as follows: 
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As for the weight formula of the above behavioral characteristics, analyze the importance 
degree of behavioral characteristics in the malicious application and the benign application to 
construct the absolute difference weight of the characteristics iW  1 definition formula is as 
follows: 

 ( ) ( ) ( ) ( ), , , ,= i M i M i B i BiW TF IDF ITF DF∗ − ∗  (5) 

                                      
 

Through the above improved TF-IDF algorithm, this paper analyzes the call behavior 
weight of behavior characteristics in malicious and benign applications. The higher the weight, 
the more important the behavior feature is to the classification and detection of malicious 
software, and finally ranks it in descending weight order. 

3.3 Feature Embedding Moudle 
Malicious behavior of malware can reflect the features of system calls. Therefore, when 

detecting malware, we can use not only a single type of feature set, but also a combination of 
different feature sets. In order to use composite feature sets, we need to solve how to combine 
different dimensional feature groups into a unified representation. 
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We use TF-IDF algorithm to calculate the weight iW  for each behavior feature i  of 

different feature sets. Through the size of  iW , we sorted different types of feature sets into a 
new feature set S  as follows: 

 ( )1 2, , , iS sort W W W=   (6) 

We define feature set S as a Boolean expression with | |iS  dimensions, and then embed 
the feature set into a vector space X  to get a unified representation. If application  X  uses 
some features in the feature set, the feature set is a vector of 1 with a position of 0. Therefore, 
we can convert any application into vector space as follows: 

  (7) 

Let's consider a real example: when a malware steals a user's contact information, it 
needs to use group:android.permission-group.contacts, so that it can be embedded into a 
vector space, as shown below： 
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In this way, we embed different feature sets into a unified joint vector space, and we can 
use feature sets to perform extensive detection. 

3.4 Detection model Deep Learning Moudel 
LSTM is proposed by Hochreiter [30], which can effectively overcome the gradient 

explosion and gradient disappearance caused by the long-term dependence of traditional RNN. 
It is composed of a forget gate, an input gate, an output gate and a memory cell. Through the 
forget gate, information is filtered, useful information is left behind, useless information is 
forgotten, and information is fully analyzed. Therefore, we design the LSTM network structure 
as a classification network, use the feature vector generated by the feature weighting method 
to classify, and deeply analyze the information between context features.  

We use LSTM classification model to detect malicious applications. Its structure is shown 
in Fig. 2. Firstly, the model uses the method of feature weighting to construct the feature vector 
as the input, analyzes the relationship between the parameters of the input vector and the 
accuracy of system detection of malicious applications, and continuously adjusts the vector 
size to achieve a comprehensive detection of malicious applications. Then we consider the 
feature vectors of different attributes to analyze the performance of the system to detect 
malicious applications and select the best feature vectors. The hidden layer is composed of 
LSTM neural network, and Adam algorithm is used as optimization method in training neural 
network. 

The algorithm corrects the mean value of gradient and the mean square of gradient by 
using the number of iterations and delay factors. It can predict the change of gradient more 
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accurately and has higher convergence speed. And the parameters are improved, and the 
number of hidden units is selected and debugged to achieve the best detection effect. After the 
hidden layer, a layer of full connection layer is constructed. Because the whole process is a 
classification and detection task, the output of the full connection layer is taken as the input of 
the classification layer, the application detection is classified by Sigmoid classifier, and the 
binary cross entropy loss function is used as the loss function to evaluate the prediction and 
actual effect of the detection model. 

 

 
Fig. 2. LSTM detection model structure 

3.4.1 LSTM Algorithm 
In this paper, LSTM neural network is used for application classification detection. The 

TF-IDF algorithm is used to sort the features according to the weight and form the feature 
vector as the input sequence to analyze the application. The LSTM module includes Forget 
Gate, Input Gate, Output Gate and a cell to filter, save and update information. Next, we will 
introduce the LSTM module: 

Forget Gate screens the cell state of the upper layer to leave useful information and Forget 
useless information. The formula is as follows: 

 [ ]( )1,t f t t ff W h x bσ −= ∗ +  (9) 

fW  and fb  are respectively the weight and bias of the forgetting gate, 1th −   is the upper 
hidden state, and σ  is the activation function of Sigmod. The forgetting gate is controlled by 
the sigmoid function, which generates a value of tf   based on the output 1th −  and the current 

input tx  at the previous moment, and decides whether to output the information 1tC −  
obtained at the previous moment. 

Input Gate judge the information, send the important information to the update place of 
cell state, and complete the update of cell state. The formula is as follows: 
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 [ ]( )1,t i t t ii W h x bσ −= ∗ +  (10) 

 [ ]( )1 1tanh ,t t t t c t t cC f C i W h x b− −= ∗ + ∗ ∗ +  (11) 
 

iW  and ib  are the weights and biasing of the input gate, cW   and cb  are the weights and 

biasing of the cell state,  1tC −  and 1tC −  are the original cell state and the current cell state, 
respectively. 
The process consists of two parts. One is to use the Sigmoid function to determine which 
information needs to be updated and added to the cell state. The other is to use the tanh  
activation function to transform the information that needs to be updated into a candidate 
vector  that can be added into the cell state to generate a new candidate vector 1tC − . We 

combine the above two parts to generate a new cell state tC . 
The Output Gate contains the current input, the previous hidden state, the current cell 

state and so on to control the Output of the cell state of this layer. The formula is as follows: 
 
 [ ]( )1,t o t t oo W h x bσ −= ∗ +  (12) 

 ( )tanht t th o C= ∗  (13) 
                                                                                                        

Where oW  and ob  are respectively the weight and offset of the output gate. Sigmoid activation 

function is used to determine the desired output of to , then tanh activation function is used 

to process the contents of the cell state, and th  to determine which cell state to output. 
 

4. Experimental Analysis 

4.1 Dataset 
In order to verify the effectiveness of the proposed detection method, we use a data set 

consisting of 4000 malicious samples and 4000 benign samples. We have downloaded 7000 
Android apps from the official Android Market, removed the unusable and duplicate apps, and 
got 4000 apps, and marked them as benign apps; downloaded Android apps from VirusShare 
(https://virusshare.com/), removed the unusable and duplicate apps, and got 4000 apps, and 
marked them as malicious apps. The application of training set and test set in the experiment 
consists of the above two parts. 

4.2 Enviornment Metrics 
The experiment in this paper was done on Windows 7 with Intel(R)Core (TM) i3-2130 

CPU 3.40ghz, 16G of RAM. We used 4 different evaluation indexes, namely, Precision 

( = TPP
TP FP+

), Recall ( TPR
TP FN

=
+

), F-score ( ( )2
P R

F
P R
∗

=
+

) and Accuracy 
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( = TP TNACC
TP FP TN FN

+
+ + +

), as evaluation indexes to evaluate the effect of the detection 

model.  TP —the number of malware samples that are correctly classified; TN —the number 
of benign samples that are correctly classified; FP —the number of benign samples that are 
incorrectly classified; FN —the number of malware samples that are incorrectly 
classified .The evaluation index formula is as follows: 

4.3 Parameter Setting 
We randomly selected 3000 ordinary applications and 3000 malicious applications and 

analyzed the structural performance of our test model from different perspectives. As shown 
in Fig. 3, we select the number of units in the hidden layer. Considering that the number of 
units in the hidden layer is too small, the data cannot be trained or the detection performance 
is poor, and the application cannot be accurately detected. When the number of hidden layers 
is too much, the training data is likely to fall into the local minimum and not get the optimal 
performance. So we choose the same features as the input vector length, found hidden layer 
unit number to 300 has high detection performance, and the hidden layer unit number from 
300 to begin testing, we found all the hidden layer unit number from the Fig. of more than 93% 
accurate, and, when the hidden layer unit number to 900 accuracy reached 95.12%, higher than 
other performance of the unit number of hidden layers, so the paper selection for hidden layer 
unit number 900. 

Secondly, we consider the impact of the length of the input eigenvector on malware 
detection. We test the relationship between the length of input eigenvectors and the accuracy 
of Android application classification. On the one hand, considering that the input feature set 
is too small to cover all malicious and normal behaviors, the input feature set is too long, which 
will cause additional overhead. On the other hand, we found that when the input feature vector 
length reaches 1000, it has better detection effect, so the input feature vector size starts from 
1000. Using the results of these experiments, the optimal eigenvector of the classification task 
is selected. As can be seen from the figure, our classifier can distinguish malware from normal 
software, and achieve good accuracy and recall rate. It can be seen from Fig. 4 that the best 
classification is achieved when the length of feature set is 8000, that is, the accuracy is 95.31%, 
and the recall rate is 95.86%. In other cases, the recall rate and accuracy index are 8000 lower 
than the length of feature set, but the accuracy rate and recall rate of detection results are still 
above 91%. It shows that the method in this paper can extract the applied behavior features 
well, and it will not lead to large fluctuations in the classification results, and achieve good 
accuracy. 

We also analyze whether the number of hidden layers in different LSTM classification 
models would affect the detection results. We analyze the detection performance of LSTM 
classification models with different hidden layers. Each layer of all networks has 900 hidden 
units, and the input eigenvector length is 8000. As can be seen from Fig. 5, when the number 
of hidden layers is 3, the method in this paper can achieve the best classification result, that is, 
the accuracy rate is 95.12% and the precision rate is 94.67%.When the number of hidden layers 
is less than 3, not enough information can be obtained. If the number of hidden layers is greater 
than 3, then the network is over-fitting. 
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Fig. 3. Accuracy and recall under different numbers of hidden units 

 
Fig. 4. Accuracy and recall under of different lengths of the feature vectors 

In order to be able to accurately show malicious behavior in the application and get better 
detection results, researchers will choose different feature sets for detection research. In this 
paper, we use each feature set defined in the third section, we evaluate the effectiveness of the 
methods mentioned in this paper on different feature sets, and we embed each feature set into 
the joint vector space through TF-IDF algorithm to obtain comprehensive detection. 
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Fig. 5. Feature Vector Evaluation Based on Different Feature Sets 

From Table 1, we can see that the combined feature set has the best effect in malware 
detection. Compared with other feature sets, the performance indicators differ by more than 
3% and the detection effect of combined features cannot be achieved. There are many reasons 
for this situation. For example, the corresponding detection of permission feature set provides 
less information and cannot accurately detect applications. 

 
Table 1. Metrics under a different number of hidden layers 

Hidden Layer Precision Recall F-Score Accuracy 
1 92.64% 93.15% 92.89% 93.89% 
2 92.67% 94.47% 93.56% 94.83% 
3 93.32% 95.86% 94.57% 95.31% 
4 92.13% 96.30% 94.17% 94.42% 

 

4.4 Experimental Result 
In order to verify the proposed in-depth learning Android malicious detection method 

based on feature analysis, we use the same extracted feature set to compare with the current 
commonly used detection methods. The comparison results are shown in Table 2. When the 
machine learning algorithm is used for detection, it can also achieve good detection effect. The 
accuracy of detection is over 87%, and the accuracy of deep learning algorithm is over 95%. 
Other performance indicators are better than the above detection algorithm. Experiments show 
that the performance of the system using LSTM classification detection model is better than 
that of other malware detection models. 
 

Table 2. Experimental results of different classifiers 

Classifier Precision Recall F-Score Accuracy 
SVM 90.89% 77.65% 83.75.% 87.48% 
Logistic 91.04% 95.32% 93.13% 94.53% 
Decision Tree 88.11% 92.22% 90.12% 91.59% 
Naïve  Bayes 89.20% 91.09% 90.14% 91.71% 
LSTM 93.32% 95.86% 94.57% 95.31% 

 
 

77.00%
82.00%
87.00%
92.00%
97.00% Precision Recall F-Score Accuracy
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To sum up, the paper uses TF-IDF algorithm to process the behavior features, and uses 
long short-term memory neural network algorithm to form a deep learning Android malicious 
detection method based on feature analysis. Through experiments, it is verified that this model 
can detect malicious applications better than other detection models, can achieve more 
accurate and rapid detection, and achieve the expected detection effect. 

5. Conlusion 
In recent years, the prevalence of malicious applications on the Android platform and the 

existing Android malware detection technology have been studied and analyzed. This paper 
proposes a deep learning Android malware detection method based on feature analysis. This 
method combines TF-IDF algorithm with LSTM network algorithm to detect Android 
malicious applications accurately and effectively. This method analyzes the behavior features 
and optimizes the parameters to achieve the best detection performance. Experiments show 
that the model improves detection performance, has a high accuracy, and has a strong ability 
to identify malicious applications. This scheme analyzes the application from the overall 
perspective, which will produce certain errors, negatively affect the detection of malicious 
applications, and fail to detect malicious behaviors generated by the application running. In 
the future work, we will divide the applications into categories, analyze the applications of 
different categories in detail, extract the corresponding behavioral characteristics for analysis, 
improve the detection performance of malicious applications, and extend the extracted feature 
set to dynamic analysis for detailed analysis of applications. 
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