• Title/Summary/Keyword: Major capsid protein (MCP)

Search Result 16, Processing Time 0.019 seconds

Immunogenicity of the Recombinant Pseudorabies Virus Major Capsid Protein Expressed by Baculovirus Vector System (Baculovirus Vector System에 의해 발현된 재조합 Pseudorabies Virus Major Capsid Protein의 면역원성)

  • Jun, Moo-Hyung;An, Dong-Jun;Chang, Kyung-Soo;Cho, Young-Sung;Park, Jong-Hyeon;Song, Jae-Young;Hyun, Bang-Hun;An, Soo-Hwan
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.163-171
    • /
    • 1996
  • The recombinant pseudorabies virus major capsid protein (rMCP) was produced by expression of the MCP gene in Sf-9 cell using baculovirus transfer vector system. Following evaluation of the immunochemical properties of the rMCP, the immunogenicity of the recombinant subunit protiens were investigated in guinea pig and swine to obtain the preliminary guide line for the subunit vaccine using rMCP and gP50. It was proved that ultrasonication and 30% ammonium sulfate was most efficient to concentrate and purify the protein. The rMCP was safe in mice, guinea pigs and piglets. In guinea pigs, rMCP mixed with various adjuvants induced substantial degree of serum neutralizing antibody titers, but revealed incomplete protectivity against challenge. In swine, the combination of rMCP and gP50 showed the higher serum neutralizing antibody titers and cellular immune responses than rMCP alone. However, the protectivity was lower in comparison with the commercial gI-deleted inactivated vaccine. We expect these results to contribute to characterization of MCP gene of Korean isolate of PRV and to ultilize as preliminary information for prodution and evaluation of PRV recombinant subunit vaccines.

  • PDF

The serodiagnosis of a lymphocystis disease virus infection using an antibody raised against a recombinant major capsid protein

  • Seo, Ja-Young;Kang, Bong-Jo;Oh, Hyoung-Jong;Lee, Jae-Il;Kim, Tae-Jung
    • Journal of fish pathology
    • /
    • v.21 no.3
    • /
    • pp.175-180
    • /
    • 2008
  • Lymphocystis is a viral disease of fish primarily in marine and brackishwaters. Here we report the cloning, expression, and the serological applications of the lymphocystis disease virus (LCDV) major capsid protein (MCP). The MCP gene was amplified by PCR from the genomic DNA of LCDV isolated from Schlegel's black rockfish, Sebastes schlegeli, and expressed in E. coli. Mouse antisera raised against the purified recombinant MCP (rMCP) reacted with the viral MCP in an immunofluorescence assay, indicating that this rMCP would be useful for serological studies of field samples.

Cloning of Major Capsid Protein Gene of Pseudorabies Virus and Expression by Baculovirus Vector System (Pseudorabies Virus의 Major Capsid Protein 유전자의 클론닝과 Baculovirus Vector System에 의한 발현)

  • An, Dong-Jun;Jun, Moo-Hyung;Song, Jae-Young;Park, Jong-Hyeon;Hyun, Bang-Hun;Chang, Kyung-Soo;An, Soo-Hwan
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.151-162
    • /
    • 1996
  • Pseudorabies is caused by Pseudorabies virus (PRV: Aujeszky's disease virus) of Herpesviridae that is characterized by 100 to 150nm in size with a linear double-stranded DNA molecule with of approximately $90{\times}10^6Da$. This disease affects most of domestic animals such as swine, cattle, dog, sheep, cat, chicken, etc. causing high mortality and economic losses. In swine, young piglets show high mortality and pregnant sows, reproductive failures. However the adult swine reveals no clinical signs in general. But they become a carrier state and play an important role for propagation of the disease. In this study, the nucleotide sequence of major casid protein gene of PRV, Yangsan strain isolated from the diseased swine in Korea was analyzed, and the recombinant MCP was produced by expression of the MCP gene in Sf-9 cell using baculovirus transfer vector system. As result, in BamHI digestion, MCP gene locus of PRV YS strain showed different from that of Indiana S strain. The patterns of enzyme mapping were also found to be unidentical each other. The sequence of the MCP gene partially analyzed showed 98.09% identity to Indiana S strain. The expression of MCP in Sf-9 cell cotransfected by pVLMCP-44 baculovirus expression vector was characterized by Southern blot hybridization, immunofluoresent and immunocytochemical tests, SDS-PAGE and Western blotting. The rMCP with M.W. 142kDa was most effectively expressed in Sf-9 cells at the 3-4th days post inoculation of the recombinant baculovirus by 2 moi.

  • PDF

Genetic relatedness of Megalocytivirus from diseased fishes in Korea (국내 어류에서 분리된 Megalocytivirus의 유전형 분류 및 상관관계 분석)

  • Lee, Eun Sun;Cho, Miyoung;Min, Eun Young;Jung, Sung Hee;Kim, Kwang Il
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • In this study, we collected 39 megalocytiviruses isolated from diseased fish in Korea from 2012 to 2018. Major capsid protein (MCP) gene, a part of vascular endothelial growth factor (VEGF) gene and histidine triad motif-like protein (HIT) genes of Megalocytivirus were targeted for PCR amplification and analysis of those DNA nucleotide sequences. Korean strains revealed two genotypes (red sea bream iridovirus and turbot reddish body iridovirus types) based on the phylogeny of MCP gene. The red sea bream iridovirus type (RSIV-type) megalocytiviruses were divided into RSIV-subgroup 1 and 2. From the phylogenetic analysis of the VEGF genes, a genotypic variant of RSIV-type Megalocytivirus was identified. The HIT-like protein gene was detected in RSIVs, but not in TBRIV and ISKNV, suggesting that HIT-like protein gene may be specific in RSIV.

Comparison of detective ranavirus with major capsid protein gene from infected frogs (Pelophylax nigromaculatus and Lithobates catesbeianus) in South Korea

  • Jongsun, Kim;Nam-Ho, Roh;Jaejin, Park;Daesik, Park
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.276-281
    • /
    • 2022
  • Ranaviruses are a primary cause of amphibian extinctions. More consistent ranavirus-infection reports and genetic characterizations of identified viruses are urgently needed, particularly from Asian countries. The objectives of this study were to obtain the partial major capsid protein (MCP) gene sequences (506 bp) of the ranavirus responsible for infecting frogs in South Korea, as our previous research had confirmed using qPCR, and to evaluate their genetic relationships with other previously reported ranavirus sequences. Three different ranavirus MCP sequences were obtained from Pelophylax nigromaculatus and Lithobates catesbeianus. All six different types of MCP sequence from the ranavirus identified in South Korea to date belonged to the Frog virus 3 (FV3)-like virus group in the genus Ranavirus. To better understand the origin and spread of ranaviruses in South Korea, further infection reports and full genome analyses of the identified ranaviruses are needed.

In situ Hybridization of a Megalocytivirus Using Nucleic Acid Probes against ATPase and the Major Capsid Protein of Rock Bream Iridovirus

  • Lee, Nam-Sil;Do, Jeong-Wan;Jung, Sung-Ju;Park, Mi-Seon;Kim, Jin-Woo;Kim, Yi-Cheong
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.146-152
    • /
    • 2006
  • Systemic infections of maricultured fishes by Megalocytivirus species have occurred over a broad area in South Korea, causing extensive economic loss. We developed digoxigenin-labeled nucleic acid probes against the 230-bp ATPase and 311-bp major capsid protein (MCP) of rock bream Oplegnathus fasciatus iridovirus (RBIV) using polymerase chain reaction, and an in situ hybridization (ISH) method to detect Megalocytivirus in formalin-fixed tissues of mariculture species (rock bream, sea bass, and olive flounder). ISH-positive cells were abundant in the hematopoietic and connective tissues of various organs, while brain tissue showed little or no signal. The ISH procedure can become an important diagnostic tool in complement with histopathological methods, and advances epidemiological studies on the origin and distribution of Megalocytivirus in mariculture.

The First Report of a Megalocytivirus Infection in Farmed Starry Flounder, Platichthys stellatus, in Korea

  • Won, Kyoung-Mi;Cho, Mi Young;Park, Myoung Ae;Jee, Bo Young;Myeong, Jeong-In;Kim, Jin Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.93-99
    • /
    • 2013
  • In 2009, a systemic megalocytivirus infection associated with high mortality was detected for the first time in cultured starry flounder Platichthys stellatus in Korea. Diseased starry flounder had pale bodies and gill coloring and enlarged spleens. Histopathological examinations revealed basophilic enlarged cells in various organs of diseased starry flounder. Polymerase chain reaction (PCR) was performed on tissue samples using three published primer sets developed for the red sea bream iridovirus. PCR products were detected for all primer sets, except 1-F/1-R, which are registered by the World Organization for Animal Health (OIE). The part of the gene corresponding to the full open reading frame encoding the viral major capsid protein (MCP) was amplified by PCR. PCR products of approximately 1,581 bp were cloned, and the nucleotide sequences were analyzed phylogenetically. The MCP gene of the starry flounder iridovirus, designated SFIV0909, was identical to that of the turbot reddish body iridovirus (AB166788).

First detection of ranavirus in a wild population of Dybowski's brown frog (Rana dybowskii) in South Korea

  • Park, Jaejin;Grajal-Puche, Alejandro;Roh, Nam-Ho;Park, Il-Kook;Ra, Nam-Yong;Park, Daesik
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.10-16
    • /
    • 2021
  • Background: Ranavirus is an emerging infectious disease which has been linked to mass mortality events in various amphibian species. In this study, we document the first mass mortality event of an adult population of Dybowski's brown frogs (Rana dybowskii), in 2017, within a mountain valley in South Korea. Results: We confirmed the presence of ranavirus from all collected frogs (n = 22) via PCR and obtained the 500 bp major capsid protein (MCP) sequence from 13 individuals. The identified MCP sequence highly resembled Frog virus 3 (FV3) and was the same haplotype of a previously identified viral sequence collected from Huanren brown frog (R. huanrenensis) tadpoles in South Korea. Human habitat alteration, by recent erosion control works, may be partially responsible for this mass mortality event. Conclusion: We document the first mass mortality event in a wild Korean population of R. dybowskii. We also suggest, to determine if ranavirus infection is a threat to amphibians, government officials and researchers should develop continuous, country-wide, ranavirus monitoring programs of Korean amphibian populations.

Differentiation of Lymphocystis Disease Virus Genotype by Multiplex PCR

  • Kitamura Shin Ichi;Jung Sung-Ju;Oh Myung-Joo
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.248-253
    • /
    • 2006
  • Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease. The viruses have been divided into three genotypes (genotype I for LCDV-1, II for Japanese flounder isolates, and III for rockfish isolates) on the basis of major capsid protein (MCP) gene sequences. In this study, we developed a multiplex PCR primer set in order to distinguish these genotypes. We also analyzed the MCP gene of a new LCDV isolate from the sea bass (SB98Yosu). Comparison of sequence identities between SB98Yosu and eight Japanese flounder isolates, revealed identity of more than 90.1 % at nucleotide level and 96.5% at deduced amino acid level, respectively. Phylogenetic analyses based on the MCP gene showed that SB98Yosu belongs to genotype II, along with Japanese flounder isolates. Multiplex PCR based on the MCP gene allowed us to identify these genotypes in a simple and rapid manner, even in a sample that contained two genotypes, in this case genotypes II and III.