DOI QR코드

DOI QR Code

Comparison of detective ranavirus with major capsid protein gene from infected frogs (Pelophylax nigromaculatus and Lithobates catesbeianus) in South Korea

  • Jongsun, Kim (Division of Science Education, Kangwon National University) ;
  • Nam-Ho, Roh (Department of Biological Sciences, Kangwon National University) ;
  • Jaejin, Park (Division of Science Education, Kangwon National University) ;
  • Daesik, Park (Division of Science Education, Kangwon National University)
  • Received : 2022.07.19
  • Accepted : 2022.10.06
  • Published : 2022.12.31

Abstract

Ranaviruses are a primary cause of amphibian extinctions. More consistent ranavirus-infection reports and genetic characterizations of identified viruses are urgently needed, particularly from Asian countries. The objectives of this study were to obtain the partial major capsid protein (MCP) gene sequences (506 bp) of the ranavirus responsible for infecting frogs in South Korea, as our previous research had confirmed using qPCR, and to evaluate their genetic relationships with other previously reported ranavirus sequences. Three different ranavirus MCP sequences were obtained from Pelophylax nigromaculatus and Lithobates catesbeianus. All six different types of MCP sequence from the ranavirus identified in South Korea to date belonged to the Frog virus 3 (FV3)-like virus group in the genus Ranavirus. To better understand the origin and spread of ranaviruses in South Korea, further infection reports and full genome analyses of the identified ranaviruses are needed.

Keywords

Acknowledgement

We thank Woo-Jin Choi, Il-Kook Park, Ji-Ho Park for their help during field sampling and MinWoo Park, Ho-Jun Jung for their help during the dissection.

References

  1. Brunner JL, Olson DH, Gray MJ, Miller DL, Duffus ALJ. Global patterns of ranavirus detections. FACETS. 2021;6:912-24. https://doi.org/10.1139/facets-2020-0013.
  2. Cronin JP, Welsh ME, Dekkers MG, Abercrombie ST, Mitchell CE. Host physiological phenotype explains pathogen reservoir potential. Ecol Lett. 2010;13(10):1221-32. https://doi.org/10.1111/j.1461-0248.2010.01513.x.
  3. Do JW, Cha SJ, Kim JS, An EJ, Park MS, Kim JW, et al. Sequence variation in the gene encoding the major capsid protein of Korean fish iridoviruses. Arch Virol. 2005;150(2):351-9. https://doi.org/10.1007/s00705-004-0424-6.
  4. Duffus ALJ, Waltzek TB, Stohr AC, Allender MC, Gotesman M, Whittington RJ, et al. Distribution and host range of ranaviruses. In: Gray MJ, Chinchar VG, editors. Ranaviruses. Cham: Springer; 2015. p. 9-57.
  5. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-7. https://doi.org/10.1093/nar/gkh340.
  6. Ferreira CM, Subramaniam K, de Sousa RLM, Tavares LS, Correa TC, Waltzek TB. Genomic sequencing of a frog virus 3 strain from cultured American bullfrogs (Lithobates catesbeianus) in Brazil. Arch Virol. 2021;166(7):1961-4. https://doi.org/10.1007/s00705-021-05094-y.
  7. Granoff A, Came PE, Rafferty KA Jr. The isolation and properties of viruses from Rana pipiens: their possible relationship to the renal adenocarcinoma of the leopard frog. Ann N Y Acad Sci. 1965;126(1):237-55. https://doi.org/10.1111/j.1749-6632.1965.tb14278.x.
  8. Grant SA, Bienentreu JF, Vilaca ST, Brunetti CR, Lesbarreres D, Murray DL, et al. Low intraspecific variation of Frog virus 3 with evidence for novel FV3-like isolates in central and northwestern Canada. Dis Aquat Organ. 2019;134(1):1-13. https://doi.org/10.3354/dao03354.
  9. Gray MJ, Miller DL, Schmutzer AC, Baldwin CA. Frog virus 3 prevalence in tadpole populations inhabiting cattle-access and non-access wetlands in Tennessee, USA. Dis Aquat Organ. 2007;77(2):97-103. https://doi.org/10.3354/dao01837.
  10. Hazeri M, Hassan MD, Abba Y, Omar AR, Allaudin ZN, Soltani M, et al. Molecular characterisation of grouper iridovirus isolates from Peninsular Malaysia. J Vet Malaysia. 2017;29(1):1-6.
  11. Herath J, Ellepola G, Meegaskumbura M. Patterns of infection, origins, and transmission of ranaviruses among the ectothermic vertebrates of Asia. Ecol Evol. 2021;11(22):15498-519. https://doi.org/10.1002/ece3.8243.
  12. Hsieh CY, Rairat T, Chou CC. Detection of ranavirus by PCR and in situ hybridization in the American bullfrog (Rana catesbeiana) in Taiwan. Aquaculture. 2021;543:736955. https://doi.org/10.1016/j.aquaculture.2021.736955.
  13. Huang SM, Tu C, Tseng CH, Huang CC, Chou CC, Kuo HC, et al. Genetic analysis of fish iridoviruses isolated in Taiwan during 2001-2009. Arch Virol. 2011;156(9):1505-15. https://doi.org/10.1007/s00705-011-1017-9.
  14. Jancovich JK, Steckler NK, Waltzek TB. Ranavirus taxonomy and phylogeny. In: Gray MJ, Chinchar VG, editors. Ranaviruses. Cham: Springer; 2015. p. 59-70.
  15. Kim S, Sim MY, Eom AH, Park DS, Ra NY. PCR detection of ranavirus in gold-spotted pond frogs (Rana plancyi chosenica) from Korea. Korean J Environ Biol. 2009;27(1):110-3.
  16. Kim WS, Choi SY, Kim DH, Oh MJ. A survey of fish viruses isolated from wild marine fishes from the coastal waters of southern Korea. J Vet Diagn Invest. 2013;25(6):750-5. https://doi.org/10.1177/1040638713504755.
  17. Kwon S, Park J, Choi WJ, Koo KS, Lee JG, Park D. First case of ranavirus-associated mass mortality in a natural population of the Huanren frog (Rana huanrenensis) tadpoles in South Korea. Anim Cells Syst. 2017;21(5):358-64. https://doi.org/10.1080/19768354.2017.1376706.
  18. Lee ES, Cho M, Min EY, Jung SH, Kim KI. Genetic relatedness of Megalocytivirus from diseased fishes in Korea. J Fish Pathol. 2019;32(2):49-57. https://doi.org/10.7847/jfp.2019.32.2.049.
  19. Lisachov AP, Lisachova LS, Simonov E. First record of ranavirus (Ranavirus sp.) in Siberia, Russia. Herpetozoa. 2022;35:33-7. https://doi.org/10.3897/herpetozoa.35.e79490.
  20. Mao J, Hedrick RP, Chinchar VG. Molecular characterization, sequence analysis, and taxonomic position of newly isolated fish iridoviruses. Virology. 1997;229(1):212-20. https://doi.org/10.1006/viro.1996.8435.
  21. Mu WH, Geng Y, Yu ZH, Wang KY, Huang XL, Ou YP, et al. FV3-like ranavirus infection outbreak in black-spotted pond frogs (Rana nigromaculata) in China. Microb Pathog. 2018;123:111-4. https://doi.org/10.1016/j.micpath.2018.06.047.
  22. Park IK, Koo KS, Moon KY, Lee JG, Park D. PCR detection of ranavirus from dead Kaloula borealis and sick Hyla japonica tadpoles in the wild. Korean J Herpetol. 2017;8(1):10-4.
  23. Park J, Grajal-Puche A, Roh NH, Park IK, Ra NY, Park D. First detection of ranavirus in a wild population of Dybowski's brown frog (Rana dybowskii) in South Korea. J Ecol Environ. 2021;45:2. https://doi.org/10.1186/s41610-020-00179-2.
  24. Price SJ, Ariel E, Maclaine A, Rosa GM, Gray MJ, Brunner JL, et al. From fish to frogs and beyond: impact and host range of emergent ranaviruses. Virology. 2017;511:272-9. https://doi.org/10.1016/j.virol.2017.08.001.
  25. Robert J. Emerging ranaviral infectious diseases and amphibian decline. Diversity. 2010;2(3):314-30. https://doi.org/10.3390/d2030314.
  26. Roh N, Park J, Kim J, Kwon H, Park D. Prevalence of ranavirus infection in three anuran species across South Korea. Viruses. 2022;14(5):1073. https://doi.org/10.3390/v14051073.
  27. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539-42. https://doi.org/10.1093/sysbio/sys029.
  28. Sivasankar P, John KR, George MR, Mageshkumar P, Manzoor MM, Jeyaseelan MJP. Characterization of a virulent ranavirus isolated from marine ornamental fish in India. Virusdisease. 2017;28(4):373-82. https://doi.org/10.1007/s13337-017-0408-2.
  29. Speare R, Smith JR. An iridovirus-like agent isolated from the ornate burrowing frog Limnodynastes ornatus in northern Australia. Dis Aquat Organ. 1992;14:51-7. https://doi.org/10.3354/dao014051.
  30. Stohr AC, Lopez-Bueno A, Blahak S, Caeiro MF, Rosa GM, Alves de Matos AP, et al. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe. PLoS One. 2015;10(2):e0118633. https://doi.org/10.1371/journal.pone.0118633.
  31. Une Y, Sakuma A, Matsueda H, Nakai K, Murakami M. Ranavirus outbreak in North American bullfrogs (Rana catesbeiana), Japan, 2008. Emerg Infect Dis. 2009;15(7):1146-7. https://doi.org/10.3201/eid1507.081636.
  32. Vilaca ST, Bienentreu JF, Brunetti CR, Lesbarreres D, Murray DL, Kyle CJ. Frog virus 3 genomes reveal prevalent recombination between ranavirus lineages and their origins in Canada. J Virol. 2019;93(20):e00765-19. https://doi.org/10.1128/JVI.00765-19.
  33. Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch Virol. 2021;166(9):2633-48. https://doi.org/10.1007/s00705-021-05156-1.
  34. Waltzek TB, Miller DL, Gray MJ, Drecktrah B, Briggler JT, MacConnell B, et al. New disease records for hatchery-reared sturgeon. I. Expansion of frog virus 3 host range into Scaphirhynchus albus. Dis Aquat Organ. 2014;111(3):219-27. https://doi.org/10.3354/dao02761.
  35. Xu K, Zhu DZ, Wei Y, Schloegel LM, Chen XF, Wang XL. Broad distribution of Ranavirus in free-ranging Rana dybowskii in Heilongjiang, China. Ecohealth. 2010;7(1):18-23. https://doi.org/10.1007/s10393-010-0289-y.