DOI QR코드

DOI QR Code

First detection of ranavirus in a wild population of Dybowski's brown frog (Rana dybowskii) in South Korea

  • Park, Jaejin (Department of Regional Innovation, Kangwon National University) ;
  • Grajal-Puche, Alejandro (Department of Biological Sciences, Northern Arizona University) ;
  • Roh, Nam-Ho (Natural Environmental Restoration Institute Co. Ltd.) ;
  • Park, Il-Kook (Division of Science Education, Kangwon National University) ;
  • Ra, Nam-Yong (Rana Eco-Consultant) ;
  • Park, Daesik (Division of Science Education, Kangwon National University)
  • Received : 2020.09.14
  • Accepted : 2020.12.25
  • Published : 2021.03.31

Abstract

Background: Ranavirus is an emerging infectious disease which has been linked to mass mortality events in various amphibian species. In this study, we document the first mass mortality event of an adult population of Dybowski's brown frogs (Rana dybowskii), in 2017, within a mountain valley in South Korea. Results: We confirmed the presence of ranavirus from all collected frogs (n = 22) via PCR and obtained the 500 bp major capsid protein (MCP) sequence from 13 individuals. The identified MCP sequence highly resembled Frog virus 3 (FV3) and was the same haplotype of a previously identified viral sequence collected from Huanren brown frog (R. huanrenensis) tadpoles in South Korea. Human habitat alteration, by recent erosion control works, may be partially responsible for this mass mortality event. Conclusion: We document the first mass mortality event in a wild Korean population of R. dybowskii. We also suggest, to determine if ranavirus infection is a threat to amphibians, government officials and researchers should develop continuous, country-wide, ranavirus monitoring programs of Korean amphibian populations.

Keywords

References

  1. Ahne W, Schlotfeldt HJ, Thomsen I. Fish viruses: isolation of an icosahedral cytoplasmic deoxyribovirus from sheatfish (Silurus glanis). J Vet Med B. 1989;36(1-10):333-6. https://doi.org/10.1111/j.1439-0450.1989.tb00611.x
  2. Brunner JL, Storfer A, Gray MJ, Hoverman JT. Ranavirus ecology and evolution: from epidemiology to extinction. In: Gray MJ, Chinchar VG, editors. Ranaviruses. Cham: Springer; 2015. p. 71-104.
  3. Carey C, Bradford DF, Brunner JL, Collins JP, Davidson EW, Longcore JE, et al. Biotic factors in amphibian population declines. In: Linder G, Krest SK, Sparling DW, editors. Amphibian decline: an integrated analysis of multiple stressor effects. Pensacola: SETAC Press; 2003. p. 153-208.
  4. Carey C, Cohen N, Rollins-Smith L. Amphibian declines: an immunological perspective. Dev Comp Immunol. 1999;23(6):459-72. https://doi.org/10.1016/S0145-305X(99)00028-2
  5. Chen Z, Gui J, Gao X, Pei C, Hong Y, Zhang Q. Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV). Vet Res. 2013;44(1):1-13. https://doi.org/10.1186/1297-9716-44-1
  6. Chen ZX, Zheng JC, Jiang YL. A new iridovirus isolated from soft-shelled turtle. Virus Res. 1999;63(1-2):147-51. https://doi.org/10.1016/S0168-1702(99)00069-6
  7. Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R. Emerging infectious diseases and amphibian population declines. Emerg Infect Dis. 1999;5(6):735. https://doi.org/10.3201/eid0506.990601
  8. de Matos APA, da Silva Trabucho MFA, Papp T, Matos BADCA, Correia ACL, Marschang RE. New viruses from Lacerta monticola (Serra da Estrela, Portugal): further evidence for a new group of nucleo-cytoplasmic large deoxyriboviruses. Microsc Microanal. 2011;17(1):101-8. https://doi.org/10.1017/S143192761009433X
  9. Duffus ALJ, Pauli BD, Wozney K, Brunetti CR, Berrill M. Frog virus 3-like infections in aquatic amphibian communities. J Wildlife Dis. 2008;44(1):109-20. https://doi.org/10.7589/0090-3558-44.1.109
  10. Duffus ALJ, Waltzek TB, Stohr AC, Allender MC, Gotesman M, Whittington RJ, et al. Distribution and host range of ranaviruses. In: Gray MJ, Chinchar VG, editors. Ranaviruses. Cham: Springer; 2015. p. 9-57.
  11. Fey SB, Siepielski AM, Nussle S, Cervantes-Yoshida K, Hwan JL, Huber ER, et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. P Natl Acad Sci USA. 2015;112(4):1083-8. https://doi.org/10.1073/pnas.1414894112
  12. Fox SF, Greer AL, Torres-Cervantes R, Collins JP. First case of ranavirus-associated morbidity and mortality in natural populations of the South American frog Atelognathus patagonicus. Dis Aquat Organ. 2006;72(1):87-92. https://doi.org/10.3354/dao072087
  13. Gahl MK, Calhoun AJK. The role of multiple stressors in ranavirus-caused amphibian mortalities in Acadia National Park wetlands. Can J Zool. 2010;88(1):108-21. https://doi.org/10.1139/Z09-124
  14. Garcia-Diaz P, Ross JV, Woolnough AP, Cassey P. Managing the risk of wildlife disease introduction: pathway-level biosecurity for preventing the introduction of alien ranaviruses. J Appl Ecol. 2017;54(1):234-41. https://doi.org/10.1111/1365-2664.12749
  15. Geng Y, Wang K, Li C, Wang J, Liao Y, Huang J. Zhou Z. PCR detection and electron microscopic observation of bred Chinese giant salamander infected with ranavirus associated with mass mortality. Vet. Sci China. 2010;40(8):817-21.
  16. Geng Y, Wang KY, Zhou ZY, Li CW, Wang J, He M, et al. First report of a ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus). J Comp Pathol. 2011;145(1):95-102. https://doi.org/10.1016/j.jcpa.2010.11.012
  17. Granoff A, Came PE, Rafferty KA Jr. The isolation and properties of viruses from Rana pipiens: their possible relationship to the renal adenocarcinoma of the leopard frog. Ann NY Acad Sci. 1965;126(1):237-55. https://doi.org/10.1111/j.1749-6632.1965.tb14278.x
  18. Gray MJ, Miller DL, Hoverman JT. Ecology and pathology of amphibian ranaviruses. Dis Aquat Organ. 2009;87(3):243-66. https://doi.org/10.3354/dao02138
  19. Green DE, Converse KA, Schrader AK. Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001. Ann NY Acad Sci. 2002;969(1):323-39. https://doi.org/10.1111/j.1749-6632.2002.tb04400.x
  20. He JG, Lu L, Deng M, He HH, Weng SP, Wang XH, et al. Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology. 2002;292(2):185-97. https://doi.org/10.1006/viro.2001.1245
  21. Hengstberger SG, Hyatt AD, Speare R, Coupar BEH. Comparison of epizootic haematopoietic necrosis and Bohle iridoviruses, recently isolated Australian iridoviruses. Dis Aquat Organ. 1993;15(2):93-107. https://doi.org/10.3354/dao015093
  22. Kang MJ, Kim KD, Oh KS, Park JW, Park JH. Analysis of forest environmental factors on torrent erosion control work area in Gyeongsangnam-do: focus on erosion control dam and stream conservation. J Agric & Life Sci. 2016;50(5):111-20 (in Korean). https://doi.org/10.14397/jals.2016.50.5.111
  23. Kim S, Sim MY, Eom AH, Park D, Ra NY. PCR detection of ranavirus in gold-spotted pond frogs (Rana plancyi chosenica) from Korea. Korean J Environ Biol. 2009;27(1):110-3.
  24. Kolby JE, Smith KM, Berger L, Karesh WB, Preston A, Pessier AP, Skerratt LF. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade. PloS one. 2014;9(3):e90750. https://doi.org/10.1371/journal.pone.0090750
  25. Kwon S, Park J, Choi WJ, Koo KS, Lee JG, Park D. First case of ranavirus-associated mass mortality in a natural population of the Huanren frog (Rana huanrenensis) tadpoles in South Korea. Anim Cells Syst. 2017;21(5):358-64. https://doi.org/10.1080/19768354.2017.1376706
  26. Leduc J. Life-history trade-offs in Northern leopard frog (Lithobates [Rana] pipiens) tadpoles: interactions of trace metals, temperature, and ranavirus. PhD Thesis, Laurentian University of Sudbury; 2014.
  27. Mao J, Hedrick RP, Chinchar VG. Molecular characterization, sequence analysis, and taxonomic position of newly isolated fish iridoviruses. Virology. 1997;229(1):212-20. https://doi.org/10.1006/viro.1996.8435
  28. Meng Y, Ma J, Jiang N, Zeng LB, Xiao HB. Pathological and microbiological findings from mortality of the Chinese giant salamander (Andrias davidianus). Arch Virol. 2014;159(6):1403-12. https://doi.org/10.1007/s00705-013-1962-6
  29. Miller D, Gray M, Storfer A. Ecopathology of ranaviruses infecting amphibians. Viruses. 2011;3(11):2351-73. https://doi.org/10.3390/v3112351
  30. Miller D, Pessier A, Hick P, Whittington R. 2015. Comparative pathology of ranaviruses and diagnostic techniques. In: Gray MJ, Chinchar VG. Ranaviruses. Cham: Springer; 2015. p. 171-208.
  31. Mu WH, Geng Y, Yu ZH, Wang KY, Huang XL, Ou YP, et al. FV3-like ranavirus infection outbreak in black-spotted pond frogs (Rana nigromaculata) in China. Microb Pathogenesis. 2018;123:111-4. https://doi.org/10.1016/j.micpath.2018.06.047
  32. Norris DO, Jones RE. Hormones and reproduction in fishes, amphibians, and reptiles. Berlin: Springer Science & Business Media; 2012.
  33. O'hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science. 2018;360(6389):621-7. https://doi.org/10.1126/science.aar1965
  34. Park IK, Koo KS, Moon KY, Lee JG. Park D. PCR detection of ranavirus from dead Kaloula borealis and sick Hyla japonica tadpoles in the wild. Korean. J Herpetol. 2017;8:10-4.
  35. Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817-8. https://doi.org/10.1093/bioinformatics/14.9.817
  36. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539-42. https://doi.org/10.1093/sysbio/sys029
  37. Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019;363(6434):1459-63. https://doi.org/10.1126/science.aav0379
  38. St-Amour V, Lesbarreres D. Genetic evidence of Ranavirus in toe clips: an alternative to lethal sampling methods. Conserv Genet. 2007;8(5):1247. https://doi.org/10.1007/s10592-006-9242-6
  39. Swofford DL. Paup*: Phylogenetic analysis using parsimony (and other methods). Sunderland: Sinauer Associates; 2001. Ver.4.0.b5.
  40. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2003;(1):2-3.
  41. Une Y, Kudo T, Tamukai KI, Murakami M. Epidemic ranaviral disease in imported captive frogs (Dendrobates and Phyllobates spp.), Japan, 2012: a first report. JMM Case Rep. 2014;1(3):e001198. https://doi.org/10.1099/jmmcr.0.001198
  42. Une Y, Nakajima K, Taharaguchi S, Ogihara K, Murakami M. Ranavirus infection outbreak in the salamander (Hynobius nebulosus) in Japan. J Comp Pathol. 2009a;4(141):310.
  43. Une Y, Sakuma A, Matsueda H, Nakai K, Murakami M. Ranavirus outbreak in North American bullfrogs (Rana catesbeiana), Japan, 2008. Emerg Infect Dis. 2009b;15(7):1146. https://doi.org/10.3201/eid1507.081636
  44. Warne RW, Crespi EJ, Brunner JL. Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles. Funct Ecol. 2011;25(1):139-46. https://doi.org/10.1111/j.1365-2435.2010.01793.x
  45. Weng SP, He JG, Wang XH, Lu L, Deng M, Chan SM. Outbreaks of an iridovirus disease in cultured tiger frog, Rana tigrina rugulosa. in southern China. J Fish Dis. 2002;25(7):423-7. https://doi.org/10.1046/j.1365-2761.2002.00386.x
  46. Xu K, Zhu DZ, Wei Y, Schloegel LM, Chen XF, Wang XL. Broad distribution of ranavirus in free-ranging Rana dybowskii in Heilongjiang, China. EcoHealth. 2010;7(1):18-23. https://doi.org/10.1007/s10393-010-0289-y
  47. Yang H, Baek H, Speare R, Webb R, Park S, Kim T, et al. First detection of the amphibian chytrid fungus Batrachochytrium dendrobatidis in free-ranging populations of amphibians on mainland Asia: survey in South Korea. Dis Aquat Organ. 2009;86(1):9-13. https://doi.org/10.3354/dao02098
  48. Yoo E, Jang Y. Abiotic effects on calling phenology of three frog species in Korea. Anim Cells Syst. 2012;16(3):260-7. https://doi.org/10.1080/19768354.2011.625043
  49. Yu Z, Mou W, Geng Y, Wang K, Chen D, Huang X, et al. Characterization and genomic analysis of a ranavirus associated with cultured black-spotted pond frogs (Rana nigromaculata) tadpoles mortalities in China. Transbound Emerg Dis. 2020. https://doi.org/10.1111/tbed.13534.
  50. Zhang QY, Li ZQ, Jiang YL, Liang SC, Gui JF. Preliminary studies on virus isolation and cell infection from disease frog Rana grylio. Acta Hydrobiol Sin. 1996;20(4):390-2 (in Chinese).
  51. Zhang QY, Xiao F, Li ZQ, Gui JF, Mao J, Chinchar VG. Characterization of an iridovirus from the cultured pig frog Rana grylio with lethal syndrome. Dis Aquat Organ. 2001;48(1):27-36. https://doi.org/10.3354/dao048027
  52. Zhou ZY, Geng Y, Liu XX, Ren SY, Zhou Y, Wang KY, Huang XL, et al. Characterization of a ranavirus isolated from the Chinese giant salamander (Andrias davidianus, Blanchard, 1871) in China. Aquaculture. 2013;384:66-73. https://doi.org/10.1016/j.aquaculture.2012.12.018
  53. Zhou ZY, Geng Y, Ren SY, Wang KY, Huang XL, Chen DF, et al. Ranavirus (family Iridoviridae) detection by polymerase chain reaction (PCR) in Chinese giant salamander (Andrias davidianus, Blanchard, 1871), China. Afr J Biotechnol. 2012;11(85):15130-4.
  54. Zhu YQ, Wang XL. Genetic diversity of ranaviruses in amphibians in China: 10 new isolates and their implications. Pak J Zool. 2016;48:107-14.

Cited by

  1. Patterns of infection, origins, and transmission of ranaviruses among the ectothermic vertebrates of Asia vol.11, pp.22, 2021, https://doi.org/10.1002/ece3.8243