• 제목/요약/키워드: Magnetization current

검색결과 249건 처리시간 0.027초

Current Density and Thickness Effects on Magnetic Properties of Electrodeposited CoPt Magnetic Films

  • Kim, Hyeon Soo;Jeong, Soon Young;Suh, Su Jeong
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.417-421
    • /
    • 2013
  • The dominant magnetization reversal behavior of electrodeposited CoPt samples with various thicknesses deposited at different current densities was the domain wall motion by means of wall pinning. The magnetic interaction mechanism was dipolar interaction for all samples. The dipolar interaction strength was significantly affected by the sample thickness rather than by the current density, while the magnetic properties were closely related to the current density.

Estimation of Delta Winding Current and Its Application to a Compensated-Current-Differential Relay for a Y-Δ Transformer

  • Kang, Yong-Cheol;Lee, Byung-Eun;Jin, En-Shu
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.255-263
    • /
    • 2010
  • The compensated-current-differential relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. Delta winding current is necessary to obtain the modified differential current for a $Y-\Delta$ transformer. This paper describes an estimation algorithm of the delta winding current and its application to a compensated-current-differential relay for a $Y-\Delta$ transformer. Prior to saturation, the core-loss current is calculated and used to modify the differential current. When the core first enters saturation, the initial value of the core flux is obtained by inserting the modified differential current into the magnetization curve. This flux value is used to derive the magnetizing current and consequently the modified differential current. The operating performance of the proposed relay was compared against a conventional current differential relay with harmonic blocking. Test results indicate that the proposed relay remained stable during severe magnetic inrush and over-excitation, and its operating time is significantly faster than a conventional relay. The relay is unaffected by the level of remanent flux and does not require an additional restraining or blocking signal to maintain stability. This paper concludes by implementing the proposed algorithm into a prototype relay based on a digital signal processor.

철심 변류기 2차 전류 보상 알고리즘 (A Compensating Algorithm for the Secondary Current of Iron-cored Current Transformers)

  • 강용철;박종근;강상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.628-630
    • /
    • 1995
  • CT saturation may cause protective relays to malfunction. The conventional method to deal with the problem is overdimensioning of the core so that CTs can carry up to 20 times the rated current without exceeding 10 % ratio correction. However, this not only reduces the sensitivity of relays, but also increases the CT core size. This paper presents a technique of estimating the secondary current corresponding to the CT ratio under CT saturation using the magnetization curve. The proposed algorithm can improve the sensitivity of relays to low level faults and minimize the instability of relays for external faults.

  • PDF

Synthesis and Magnetic Properties of Electrodeposited Cobalt-Iron-Vanadium Thin Films

  • Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • 제11권2호
    • /
    • pp.87-89
    • /
    • 2006
  • CoFeV thin film alloys were fabricated by electrodeposition, and the dependences of their magnetic properties on the current density were investigated using an X-ray diffractometer and a vibrating sample magnetometer. The deposited Co increased from about 45 to 60 wt.% with increasing current density until $25mA/cm^2$ whereas the deposited Fe decreased from about 55 to 40 wt.% with increasing current density until $25mA/cm^2$. The deposited V, about 2 wt.%, was independent of the current density. The current efficiencies of electrodeposition decreased linearly from about 40 to 29% with increasing current density. The X-ray diffraction measurement showed that all peaks of the CoFeV films were consistent with those of a typical Co hcp and Fe bcc mixed phase. An increase in the current density decreased the grain size and increased the lattice constant. The saturation magnetization increased from about 2.2 to 2.5 T with increasing current density. The coercivity measured in the perpendicular direction decreased from 260 to 120 Oe with increasing current density; a drastic drop of 60 Oe occurred at $5mA/cm^2$. The coercivity measured in the in-plane direction remained almost unchanged, at about 20 Oe, with increasing current density.

유도전동기 효율향상에 따른 역률 보상 콘덴서 최적 선정에 대한 연구 (A Study on the Optimum Selection of the Power Factor Compensation Condenser According to the Improved Efficiency of Induction Motor)

  • 김종겸
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1311-1315
    • /
    • 2016
  • Induction motor requires a rotating magnetic field for rotation. Current required to generate the rotating magnetic field is immediately magnetizing current. This magnetizing current is associated with the reactive power. Induction motor is always required reactive power. If reactive power is supplied only to the power supply side, the power factor is low. Therefore, it is to compensate the power factor by connecting capacitors in parallel to the motor terminal. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. High voltage generated by the self-excitation leads to insulation failure on the motor. So it is necessary to calculate the power factor correction capacitor capacity the most suitable to the extent that the magnetizing current does not exceed the capacitor current. In this study, we first computed the magnetization current and the reactive power of the induction motor and then calculates a limit of the maximum power factor by comparing the magnetizing current and the capacitor current installed in order to achieve the target power factor.

철심 변류기의 2차 전류 보상 알고리즘의 실시간 구현 및 오차 분석 (Hardware implementation and error analysis of an algorithm for compensating the secondary current of iron-cored current transformers)

  • 강용철;김성수;박종근;강상희;김광호
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.490-500
    • /
    • 1996
  • The conventional method to deal with current transformer (CT) Saturation is over dimensioning of the core so that CTs can carry up to 20 times the rated current without exceeding 10% ratio correction. However, this not only reduces the sensitivity of relays as some errors may still be present in the secondary current when a severe fault occurs, but also increases the CT size. This paper presents an algorithm for compensating the distorted secondary current of iron-cored CTs under CT saturation using the magnetization (flux-current : .lambda.-i) curve and its performance is examined for fault currents encountered on a typical 345[kV] Korean transmission system, under a variety of different system and fault conditions. In addition, the results of hardware implementation of the algorithm using a TMS320C10 digital signal processor are also presented. The proposed algorithm can improve the sensitivity of relays to low level internal faults, maximize the stability of relays for external faults, and reduce the required CT core cross-section significantly. (author). refs., figs.

  • PDF

A Study of Characteristic of Electrical-magnetic and Neutron Diffraction of Long-wire High-superconductor for Reducing Energy Losses

  • Jang, Mi-Hye
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권6호
    • /
    • pp.265-272
    • /
    • 2008
  • In this paper, AC losses of long wire Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist. The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-prob method. And the Magnetic measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O).

산업현장에서 벡터제어용 유도전동기의 오프라인 파라미터 추정 (Off-line parameter Estimation of Induction Motors for Vector Control in Industrial Field)

  • 권병기;박가우;신원창;조응상;이진섭;최창호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.234-238
    • /
    • 1998
  • Parameter estimation of induction motor for vector control presented in this paper can be easily implemented and applied to inverters in the industrial field, because it needs no additional hardware such as voltage sensor and measuring equipment. At first, the stator resistance including switching loss of inverter is measured by simple voltage-current equation. Next, in pre-magnetization of machine by imposing the d-axis constant field-current, q-axis torque current is forced to the machine until its speed feedback reachs to pre-defined level of speed limit. At this time, we can measure the rotor time-constant by decreasing the distorted output-voltage of inverter. At last, stator inductance, transient inductance, and moment of inertia can be measured by the relationship of output voltage, output torque and speed feedback. The validity and usufulness of this method is verified by experimental results.

  • PDF

Flux Loss and Neutron Diffraction Measurement Ag-sheathed Bi-2223 Tapes in terms of Flux Creep

  • Jang Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권5호
    • /
    • pp.204-210
    • /
    • 2005
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb]: Sr: Ca: Cu: O = 2:2:2:3) tapes [(Tape I, un-twist-pitch) and the other with a twist-pitch of 10 mm (Tape II)] were measured and compared. These samples, produced by the powder-in-(Ag) tube (PIT) method, are multi-filamentary. Also, it's produced by non-twist and different twist pitch (8, 10, 13, 30, 50 and 70 mm). The critical current measurement was carried out under the environment in liquid Nitrogen and in zero-field by 4-probe method. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O)

Multilevel Magnetization Switching in a Dual Spin Valve Structure

  • Chun, B.S.;Jeong, J.S.
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.328-331
    • /
    • 2011
  • Here, we describe a dual spin valve structure with distinct switching fields for two pinned layers. A device with this structure has a staircase of three distinct magnetoresistive states. The multiple resistance states are achieved by controlling the exchange coupling between two ferromagnetic pinned layers and two adjacent anti-ferromagnetic pinning layers. The maximum magnetoresistance ratio is 7.9% for the current-perpendicular-to-plane and 7.2% for the current-in-plane geometries, with intermediate magnetoresistance ratios of 3.9% and 3.3%, respectively. The requirements for using this exchange-biased stack as a three-state memory device are also discussed.