• Title/Summary/Keyword: Magnetic gradient

Search Result 487, Processing Time 0.023 seconds

The Closed-form Expressions of Gravity, Magnetic, Gravity Gradient Tensor, and Magnetic Gradient Tensor Due to a Rectangular Prism (직육면체 프리즘에 의한 중력, 자력, 중력 변화율 텐서 및 자력 변화율 텐서의 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • The closed-form expressions of gravity, magnetic, gravity gradient tensor, and magnetic gradient tensor due to a rectangular prism are derived. The vertical gravity is derived via triple integration of a rectangular prism in Cartesian coordinates, and the two horizontal components of vector gravity are then derived via cycle permutation of the axis variables of vertical gravity through the axial symmetry of the rectangular prism. The gravity gradient tensor is obtained by differentiating the vector gravity with respect to each coordinate. Using Poisson's relation, a vector magnetic field with constant magnetic direction can be obtained from the gravity gradient tensor. Finally, the magnetic gradient tensor is derived by differentiating the vector magnetic with respect to appropriate coordinates.

A new gradient coil design technique for open magnetic resonance imaging systems (개방형 자기공명영상시스템용 경사자계코일의 새로운 설계기법)

  • Lee, Soo-Yeol;Park, Bu-Sik;Yi, Jeong-Han;Yi, Wan
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.72-79
    • /
    • 1997
  • Most open magnetic resonance imaging systems have used the planar gradient coils whose inductances were minimized through the magnetic energy minimization procedure in the spatial frequency domain. Though the planar gradient coils have smaller inductance than conventional gradient coils, the planar gradient coils often suffer from their poor magnetic field linearity. Scaling the spatial frequencies of the current density function designed by the magnetic energy minimization, magnetic field linearity of the planar gradient coils can be greatly improved with small sacrifice of gradient coil inductance. We have found that the figure of merit of the planar gradient coils, defined by the gradient strength divided by the linearity error and the inductance, can be improved by proposed technique.

  • PDF

Detection of a Magnetic Dipole by Means of Magnetic Gradient Tensor (자력 변화율 텐서를 이용한 자기 쌍극자 위치 결정)

  • Rim, Hyoung-Rea
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.595-601
    • /
    • 2011
  • In this paper, I propose the algorithm that the location of a magnetic dipole can be detected from the magnetic gradient tensor. I induce the location vector of a vertically magnetizated dipole from the magnetic gradient tensor. Deficit of magnetic moment of magnetic dipole makes the induced location information incomplete. However, if the observation of magnetic gradient tensor would be collected on more points, the algorithm is able to catch the location of the magnetic dipole by clustering the solution of the proposed algorithm. For example, I show that the synthetic case of borehole observation of magnetic gradient tensor can find the source location successively by picking common solution area.

Closed-form Expressions of Magnetic Field and Magnetic Gradient Tensor due to a Circular Disk (원판형 이상체에 의한 자력 및 자력 변화율 텐서 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • In case axial symmetrical bodies with varying cross sections such as volcanic conduits and unexploded ordnance (UXO), it is efficient to approximate them by adding the response of thin disks perpendicular to the axis of symmetry. To compute the vector magnetic and magnetic gradient tensor respones by such bodies, it is necessary to derive an analytical expression of the circular disk. Therefore, in this study, we drive closed-form expressions of the vector magnetic and magnetic gradient tensor due to a circular disk. First, the vector magnetic field is obtained from the existing gravity gradient tensor using Poisson's relation where the gravity gradient tensor due to the same disk with a constant density can be transformed into a magnetic field. Then, the magnetic gradient tensor is derived by differentiating the vector magnetic field with respect to the cylindrical coordinates converted from the Cartesian coordinate system. Finally, both the vector magnetic and magnetic gradient tensors are derived using Lipschitz-Hankel type integrals based on the axial symmetry of the circular disk.

Partial Solution for Concomitant Gradient Field in Ultra-low Magnetic Field: Correction of Distortion Artifact

  • Lee, Seong-Joo;Shim, Jeong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.66-69
    • /
    • 2020
  • In ultra-low field magnetic resonance imaging (ULF-MRI), the strength of a static magnetic field can be comparable to that of gradient field. On that occasion, the gradient field is accompanied by concomitant gradient field, which yields distortion and blurring artifacts on MR images. Here, we focused on the distortion artifact and derived the equations capable of correcting it. Its usefulness was confirmed through the corrections in both simulated and experimental images. This solution will be effective for acquiring more accurate images in low and/or ultra-low magnetic fields.

Magnetic Field Gradient Optimization for Electronic Anti-Fouling Effect in Heat Exchanger

  • Han, Yong;Wang, Shu-Tao
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1921-1927
    • /
    • 2014
  • A new method for optimizing the magnetic field gradient in the exciting coil of electronic anti-fouling (EAF) system is presented based on changing exciting coil size. In the proposed method, two optimization expressions are deduced based on biot-savart law. The optimization expressions, which can describe the distribution of the magnetic field gradient in the coil, are the function of coil radius and coil length. These optimization expressions can be used to obtain an accurate coil size if the magnetic field gradient on a certain point on the coil's axis of symmetry is needed to be the maximum value. Comparing with the experimental results and the computation results using Finite Element Method simulation to the magnetic field gradient on the coil's axis of symmetry, the computation results obtained by the optimization expression in this article can fit the experimental results and the Finite Element Method results very well. This new method can optimize the EAF system's anti-fouling performance based on improving the magnetic field gradient distribution in the exciting coil.

Closed-form Expressions of Vector Magnetic and Magnetic Gradient Tensor due to a Line Segment (선형 이상체에 의한 벡터 자력 및 자력 변화율 텐서 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.2
    • /
    • pp.85-92
    • /
    • 2022
  • An elongated object in one direction can be approximated as a line segment. Here, the closed-form expressions of a line segment's vector magnetic and magnetic gradient tensor are required to interpret responses by a line segment. Therefore, the analytical expressions of the vector magnetic and magnetic gradient tensor are derived. The vector magnetic is converted from the existing gravity gradient tensor using Poisson's relation where the gravity gradient tensor caused by a line segment can be transformed into a vector magnetic. Then, the magnetic gradient tensor is derived by differentiating the vector magnetic with respect to each axis in the Cartesian coordinate system. The synthetic total magnetic data simulated by an iron pile on boreholes are inverted by a nonlinear inversion process so that the physical parameters of the iron pile, including the beginning point, the length, orientation, and magnetization vector are successfully estimated.

The Closed-form Expressions of Magnetic Gradient Tensor due to a Circular Cylinder (원통형 이상체에 의한 자력 변화율 텐서 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.2
    • /
    • pp.67-71
    • /
    • 2020
  • In this study, we derive closed-form expressions of magnetic gradient tensor due to a circular cylinder. Because the expression for magnetic field has been derived in a previously conducted study, expressions are developed for the magnetic gradient tensor based on the derivatives of the expressions of magnetic field with respect to the variables of the Cartesian coordinates. Furthermore, expressions are derived for the magnetic gradient tensor based on the relations between the Cartesian and cylindrical coordinates in the derivative because the expression for magnetic field contains variables of cylindrical coordinates owing to its axial symmetry.

Planar Gradient Coils for an Open MRI System (개방형 자기공명영상시스템을 위한 평면형 경사자계코일)

  • Lee, Soo-Yeol;Park, Bu-Sik;Yi, Jeong-Han;Yi, Wan
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.165-168
    • /
    • 1996
  • Though the planar gradient coils, designed by the magnetic energy minimization procedure, have smaller inductance than conventional gradient coils, the planar gradient oils often suffer from their poor magnetic field linearity. Scaling the spatial frequencies of the current density function designed by the magnetic energy minimization procedure, magnetic field linearity of the planar gradient coils can be featly improved with small sacrifice of gradient coil inductance.

  • PDF

Gradient Optimized Gradient-Echo Gradient Moment Nulling Sequences for Flow Compensation of Brain Images

  • Jahng, Geon-Ho;Stephen Pickup
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • Gradient moment nulling techniques require the introduction of an additional gradient on each axis for each order of motion correction to be applied. The additional gradients introduce new constraints on the sequence design and increase the demands on the gradient system. The purpose of this paper is to demonstrate techniques for optimization of gradient echo gradient moment nulling sequences within the constraints of the gradient hardware. Flow compensated pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. The design of the gradient moment nulling sequences requires the solution of a linear system of equations. A Mathematica package was developed that interactively solves the gradient moment nulling problem. The package allows the physicist to specify the desired order of motion compensation and the duration of the gradients in the sequence with different gradient envelopes. The gradient echo sequences with first, second, and third order motion compensation were implemented with minimum echo time. The sequences were optimized to take full advantage of the capabilities of the gradient hardware. The sequences were used to generate images of phantoms and human brains. The optimized sequences were found to have better motion compensation than comparable standard sequences.

  • PDF