• Title/Summary/Keyword: Magnetic field sensor

Search Result 490, Processing Time 0.028 seconds

The study to flat-type generate of magnetic field with CW (Continue wave) frequency and AM (Amplitude modulation) frequency

  • Shin, Gi Won;Kang, Chang Ho;Lee, Min Jun;Yang, Sung Jae;Lee, Hyuk Ho;Hong, Hyun Bin;Jo, Tae Hoon;Kwon, Gi Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.139.2-139.2
    • /
    • 2015
  • In this study, We applied the magnetic field that has CW frequency and AM frequency to heating magnetic nano powder. For this experiment, We set up the devices flat-type magnetic field generator with CW frequency and AM frequency. We supplied the current to encircling coil by adjusting the power of generating of magnetic field device for AC voltage through Slidacs and using way of LC resonance circuit and SMPS(Switching Mode Power Supply). Above the encircling coil, We covered the circular flat insulator like glass. And we located the well plate containing the magnetic nano powder liquor above the circular flat insulator and exposed the magnetic field to this well plate. Using the flat-type magnetic field generator with CW and AM frequency and the magnetic field measurement sensor(Magnetic pick up coil or Hall sensor), We measured the strength of the magnetic field of circular flat insulator's surface in each position. The temperature of the magnetic nano powder in the well plate was quantitatively measured by the magnetic field strength through the Fluoroptic thermometer.

  • PDF

Magnetoelectric Characteristics on Layered Fe78B13Si9/PZT/Fe78B13Si9 Composites for Magnetic Field Sensor (자기센서용 Fe78B13Si9/PZT/Fe78B13Si9 적층구조 소자의 ME 특성)

  • Ryu, Ji-Goo;Jeon, Seong-Jeub
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.181-187
    • /
    • 2015
  • The magnetoelectric characteristics on layered $Fe_{78}B_{13}Si_9/PZT$ and $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9$($t_m=0.017$, 0.034mm) composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range and resonance frequency range. The optimal bias magnetic field $H_{dc}$ of these samples was about 23~63 Oe range. The Me coefficient of $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9(t_m=0.034mm)$ composites reaches a maximum of $186mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, f=50 Hz and a maximum of $1280mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, resonance frequency $f_r=95.5KHz$. The output voltage shows linearity proportional to ac fields $H_{ac}$ and is about U=0~130.6 mV at $H_{ac}=0{\sim}7Oe$, f=50 Hz, U=0~12.4 V at $H_{ac}=0{\sim}10Oe$, $f_r=95.5KHz$(resonance frequency). The optimal frequency(f=50 Hz) of this sample is around the utility ac frequency(f=60 Hz). Therefore, this sample will allow for ac magnetic field sensor at utility frequency and low bias magnetic fields $H_{dc}$.

High Sensitivity Micro-fabricated Fluxgate Sensor with a Racetrack Shaped Magnetic Core

  • Choi, Won-Youl;Kim, So-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.110-114
    • /
    • 2005
  • We present a micro fluxgate magnetic sensor having solenoid coils and racetrack shaped magnetic core, which was designed to decrease the .operating power and magnetic flux leakage. Electroplated copper coils of $6\;{\mu}m$ thickness and the core of $3\;{\mu}m$ thickness were separated by benzocyclobutane (BCB) having a high insulation and good planarization characters. Permalloy $(Ni_{0.8}Fe_{0.2})$ as a magnetic core was also electroplated under 2000 gauss to induce the magnetic anisotropy. The core had the high DC effective permeability of $\~1,300$ and coercive field of $\~0.1$ Oe. The fabricated fluxgate sensor had the very small actual size of $3.0\times1.7\;mm^2$. The fluxgate sensor with a racetrack shaped core had the high sensitivity .of $\~350$ V/T at excitation condition of 3 $V_{P-P}$ and 2 MHz square wave. When two fluxgates were perpendicularly aligned in terrestrial field, their two-axis output signals were very useful to commercialize an electronic azimuth compass for the portable navigation system.

Estimation of Vehicle Position and Orientation on Magnetic Lane Using 3-axis Magnetic Sensor (3축 자기센서를 이용한 자기차선상의 차량위치 및 방향 추정)

  • Ryoo, Young-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.373-379
    • /
    • 2000
  • In this paper, an estimation system of vehicle position and orientation on magnetic lane, which is a parameter of the steering controller for automated lane following is described. To verify that the magnetic dipole model could be applied to a magnetic unit paved in roadway, the analysis of the model is compared with the data of 3-axis magnetic field measured experimentally. The sensor location could be estimated by analysis of the model based on experimental data. For the magnetic lane model merged magnetic unit, the relation of sensor location and magnetic field is acquired experimentally. The proposed estimation of vehicle position and orientation is adopted to automated lane following by computer simulation.

  • PDF

Impedance of CoZrNb Film as a Function of Frequency (CoZrNb막의 주파수에 따른 임피던스의 변화)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;Park, K.I.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.778-781
    • /
    • 2002
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in the low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field$(H_k)$ as a function of a thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and excellent soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and $320^{\circ}C}$ respectively for 2 hours. Anisotropy field$(H_k)$ of film is measured by using a MH loop tracer. Its magnetic permeability of a film is measured over the frequency range from 1 MHz to 750MHz. It has shown that the magnetic permeability of amorphous CoZrNb film is decreased due to the skin effect with increasing a thickness of the CoZrNb film, and hence its driving frequency is lowered. And, it was examined on the permeability and impedance to fabricate the MI sensor which acts at a low frequency by thickening a CoZrNb film relatively.

  • PDF

3-Dimensional Analysis of Magnetic Road and Vehicle Position Sensing System for Autonomous Driving (자율주행용 자계도로의 3차원 해석 및 차량위치검출시스템)

  • Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, a 3-dimensional analysis of magnetic road and a position sensing system for an autonomous vehicle system is described. Especially, a new position sensing system, end of the important component of an autonomous vehicle, is proposed. In a magnet based autonomous vehicle system, to sense the vehicle position, the sensor measures the field of magnetic road. The field depends on the sensor position of the vehicle on the magnetic road. As the rotation between the magnetic field and the sensor position is highly complex, it is difficult that the relation is stored in memory. Thus, a neural network is used to learn the mapping from th field to the position. The autonomous vehicle system with the proposed position sensing system is tested in experimental setup.

Improvement of Bipolar Magnetic Guidance Sensor Performance using Fuzzy Inference System (양극성 자기유도센서의 성능 향상을 위한 퍼지 추론 시스템)

  • Park, Moonho;Cho, Hyunhak;Kim, Kwangbaek;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • Most of light duty AGVs(AGCs) using tape of magnetic for the guide path have digital guidance magnetic sensor. Digital guidance magnetic sensor using magnet-tape is on/off type and has positioning error of magnet-tape as 10~50 mm. AGC using this sensor doesn't induce accurate position of magnet-line which is magnet-tape because of magnetic field which motor in AGC creates, outer magnetic field, earth's magnetic field, etc. AGC when driving wobbles due to this error and this error can cause path deviation. In this paper, we propose fuzzy inference system for improvement of bipolar analog magnetic guidance sensor performance. Fuzzy is suitable in term of fault tolerance, uncertainty tolerance, real-time operation, and Nonlinearity as compared with other algorithms. In previous research, we produced bipolar magnetic guidance sensor and we set the threshold in order to calculate digital values of magnet position. Fuzzy inference system is designed using outputs of Analog hall sensors. Magnet position calculated by digital method is improved by outputs of this system. In result, proposed method was verified by improving performance of magnetic guidance sensor.

Effect of sensor positioning error on the accuracy of magnetic field mapping result for NMR/MRI

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.28-32
    • /
    • 2015
  • Nowadays the magnetic field mapping is widely used in the design and analysis of the NMR/MRI magnet system, and the accuracy of mapping result has become more and more important. There are several factors affecting the accuracy of the mapping such as the mapping method, the precision of the sensor, the position of the measurement points, the calculation accuracy, and so on. In this paper the error due to the misalignment of the measurement points was discussed. The magnetic field in the central volume was mapped using an indirect method in an MRI magnet system and the magnetic field was fitted to a polynomial. Considering the misalignment between the original measurement points and the practical measurement points, there must be some errors in the mapping calculation and we called it positioning error. Several comparisons of the positioning error have been presented through the theoretical estimates and the exact magnetic field values. Finally, the allowable positioning errors were suggested to guarantee the accuracy of the magnetic field mapping within a certain degree for an example case.

Magnetic-field Sensitivity of PMN-PZT/Ni Magnetoelectric Composite with Piezoelectric Single Crystal Mode Changes (PMN-PZT/Ni 자기-전기 복합체에서 단결정 압전 모드에 따른 자기장 감도 특성)

  • Park, Sojeong;Peddigari, Mahesh;Ryu, Jungho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-50
    • /
    • 2020
  • Magnetoelectric (ME) composites were designed using the PMN-PZT single crystal and Ni foils; the properties and magnetic-field sensitivities of ME composites with different piezoelectric vibration modes (i.e., 31, 32, and 36 modes that depend on the crystal orientation of the single crystal) were compared. In the off-resonance condition, the ME coupling properties of the ME composites with the 32 and 36 piezoelectric vibration modes were better than those of the ME composites with the 31 piezoelectric vibration mode. However, in the resonance condition, the ME coupling properties of the ME composites were almost similar, irrespective of the piezoelectric vibration mode. Additionally, in the off-resonance condition (at 1 kHz), the magnetic-field sensitivity of the ME composites with the 36 piezoelectric vibration mode was up to 2 nT and those of the ME composites with the 31 and 32 piezoelectric vibration modes were up to 5 nT. These magnetic-field sensitivities are similar to those offered by conventional high-sensitivity magnetic-field sensors; the potential of the proposed sensor to replace costly and bulky high-sensitivity magnetic field sensors is significant.

Magnetic Field Sensors using Co-base Amorphous Ribbon (Co계 아몰퍼스리본을 이용한 자계센서)

  • Shin, Kwang-Ho;Park, Kyung-Il;Song, Jae-Yeon;Kim, Young-Hak;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.205-210
    • /
    • 2003
  • To develop the highly sensitive Magneto-Impedance sensor, the amorphous ribbon was micro-processed to meander type sensor pattern, and its external magnetic field dependence of impedance was investigated. The impedance of the pattern had peak value at the magnetic field of 13 Oe and its changing ratio was about 170%. The impedance change per unit magnetic field was about 36% at bias field of 6 Oe, in which the output with high sensitivity and linearity could be obtained. The magnetic field resolution of the sensor module, which consist of the amorphous pattern and driving circuit, was about $10^{-3}$ Oe.