DOI QR코드

DOI QR Code

Magnetoelectric Characteristics on Layered Fe78B13Si9/PZT/Fe78B13Si9 Composites for Magnetic Field Sensor

자기센서용 Fe78B13Si9/PZT/Fe78B13Si9 적층구조 소자의 ME 특성

  • Ryu, Ji-Goo (Department of Electronic Engineering, Pukyong National University) ;
  • Jeon, Seong-Jeub (Department of Electronic Engineering, Pukyong National University)
  • Received : 2015.05.13
  • Accepted : 2015.05.27
  • Published : 2015.05.31

Abstract

The magnetoelectric characteristics on layered $Fe_{78}B_{13}Si_9/PZT$ and $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9$($t_m=0.017$, 0.034mm) composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range and resonance frequency range. The optimal bias magnetic field $H_{dc}$ of these samples was about 23~63 Oe range. The Me coefficient of $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9(t_m=0.034mm)$ composites reaches a maximum of $186mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, f=50 Hz and a maximum of $1280mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, resonance frequency $f_r=95.5KHz$. The output voltage shows linearity proportional to ac fields $H_{ac}$ and is about U=0~130.6 mV at $H_{ac}=0{\sim}7Oe$, f=50 Hz, U=0~12.4 V at $H_{ac}=0{\sim}10Oe$, $f_r=95.5KHz$(resonance frequency). The optimal frequency(f=50 Hz) of this sample is around the utility ac frequency(f=60 Hz). Therefore, this sample will allow for ac magnetic field sensor at utility frequency and low bias magnetic fields $H_{dc}$.

Keywords

References

  1. Ce-Wen Nan, "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases", Phys. Rev. B, Vol. 50, pp. 6082-6068, 1994. https://doi.org/10.1103/PhysRevB.50.6082
  2. S. V. Suryanarayama, "Magnetoelectric interaction phenomena in materials", Bull. Mater. Sci., Vol. 17, No. 7, pp. 1259-1270, 1994. https://doi.org/10.1007/BF02747225
  3. J. Ryu, S. Priya, K. Uchino, and H. E. Kim, "Magnetoelectric effect in composites of magneto striction and piezoelectric materials", J. Electroceram., Vol.8, pp. 107-119, 2002. https://doi.org/10.1023/A:1020599728432
  4. Ce-Wen Nan, M. I. Bichurin, S. D. Dong, D. Viehland, and G. Srinivason, "Multiferroic magnetoelectric composites", J. Appl. Phys., Vol. 103, 031101, 2008. https://doi.org/10.1063/1.2836410
  5. J. Ryu, A. V. Carazo, K. Uchino, and H. Kim, "Piezoelectric and magnetoelectric properties of lead Zirconate Titanate/Ni-Ferrite particulate composites", J. Electroceram, Vol. 7, pp. 117-241, 2001.
  6. Y. K. Fetisov, K. E. Kamentsev, A.Y. Ostashchenko, and G. Srinivasan, "Wide-band magnetoelectric characterization of a ferrite-piezoelectric multilayer using a pulsed magnetic field", Solid State Commun., Vol. 132, pp. 13-17, 2004. https://doi.org/10.1016/j.ssc.2004.07.019
  7. D. V. Chashin, Y. K. Fetisov, E. V. Taftseva, and G. Srinivasan, "Magnetoelectric effects in layered samples of lead Zirconium titanate and nickel films", Solid State Commun., Vol. 148, pp. 55-58, 148. https://doi.org/10.1016/j.ssc.2008.07.015
  8. G. Lawes and G. Srinivasan, "Introduction to magnetoelectric coupling and multiferroic films", J. Phys. D; Appl. Phys., Vol. 44, 243001, 2011. https://doi.org/10.1088/0022-3727/44/24/243001
  9. D. Y. Huang, C. J. Lu, B. Han, X. Wang, C. X. Li, C. G. Xu, J. G. Gui, and C. G. Lin, "Giant self-biased magnetoelectric coupling characteristics of three-phase composite with endbonding structure", Appl. Phys. Lett., Vol. 105, 263502, 2014. https://doi.org/10.1063/1.4904799
  10. C. J. Lu, C. G. Xu, L. Wang, J. P. Gao, J. G. Gui, and C. G. Lim, "Investigation of optimized end-bonding magnetoelectric heterostructure for sensitive magnetic field sensor", Rev. Sci. Instrum., Vol. 85, pp. 115003, 2014. https://doi.org/10.1063/1.4901586
  11. L. Wang, Z. Du, C. Fan, L. Xu, H. Zhang, and D. Zhao, "Effect of load resistance on magnetoelectric properties in FeGa/BaTiO3/FeGa laminate composites", J. Alloys Compd., Vol. 509, pp. 7870-7873, 2011. https://doi.org/10.1016/j.jallcom.2011.04.050
  12. T. Kubota, T. Okazaki, N. Endo, K. Mikami and Y. Furuya, "Output characteristics in Fe-Pd/PZT/Fe-Pd magneto-electric composites with Fe-Pd thick layer", Sens. Actuator APhys., Vol. 200, pp. 11-15, 2013. https://doi.org/10.1016/j.sna.2012.11.021
  13. Y. K. Fetisov, A. A. Bush, K. E. Kamentsev, A. Y. Ostaschchenko, and G. Srinivasan, "Ferrite-piezoelectric multilayers for magnetic field sensors", IEEE Sens. J., Vol. 6, No. 4, pp. 935-938, 2006. https://doi.org/10.1109/JSEN.2006.877989
  14. A. A. Bush, K. E. Kamentsev, V. F. Meshcheryakov, Y. K. Fetisov, D. V. Chashin, and L. Y. Fetisov, "Low-frequency magnetoelectric effect in a Galfenol-PZT planner composite structure", Tech. Phys., Vol. 54, pp. 1314-1320, 2009. https://doi.org/10.1134/S1063784209090102
  15. G. V. Duong, R. Groessinger, M. Schoenhart, and D. Bueno-Nasques, "The lock-in technique for studying magnetielectric effect", J. Magn. Magnetic Mater., Vol. 316, pp. 390-393, 2007. https://doi.org/10.1016/j.jmmm.2007.03.185
  16. P. Li, L. Chen, Y. Wen, D. Wang, and X. Huang, "Magnetic sensor employing piezoelectric Ceramic/Rare-earth Iron Alloy/High-Permeability FeCuNbSiB composite", IEEE Sensors conference pp. 1718-1721, 2010.
  17. C. Lu, C. Xu, L. Wang, J. Gao, J. Gui, and C. Lin, "Investigation of optimized end-bonding magnetoelectric heterostructure for sensitive magnetic field sensor", Rev. Sci. Instrum., Vol. 85, pp. 115003, 2014. https://doi.org/10.1063/1.4901586
  18. D. A. Pan, Y. Bai, W. Y. Chu, and L. J. Qao, "Ni/PZT/Ni trilayered magnetoelectric composites synthesized by electro- deposition", J. Phys; Condens. Matter, Vol. 20, pp. 05203, 2008.
  19. D. A. Pan, J. J. Tian, S. G. Zhang, J. S. Sun, A. A. Volinsky, and L. J. Qiao, "Geometry effects on magnetoelectric performance of layered Ni/PZT composites", Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., Vol. 163, pp. 114-119, 2009. https://doi.org/10.1016/j.mseb.2009.05.017
  20. D. A. Pan, Y. Bai, W. Y. Chu, and L. J. Qiao, "Magnetoelectric coupling and the hydrogen effect on Ni-PZT-Ni trilayers made by electrodeposition", Smart Mater. Struct., Vol. 16, pp. 2501-2504, 2007. https://doi.org/10.1088/0964-1726/16/6/054
  21. M. I. Bichurin, D. A. Filippov, and V. M. Petrov, "Resonance magnetoelectric effects in layered magnetostrictivepiezoelectric composites", Phys. Rev. B, Vol. 68, pp. 132408, 2003. https://doi.org/10.1103/PhysRevB.68.132408
  22. D. A. Chashin , Y. K. Fetisov, E. V. Tafintseva, and G. Srinivasan, "Magnetoelectric effects in layered samples of the Zirconium titanate and Nickel films", Solid State Commun., Vol. 148, pp. 55-58, 2008. https://doi.org/10.1016/j.ssc.2008.07.015
  23. H. Q. Shen, Y. G. Wang, D. Xie, and J. H. Cheng, "Magnetoelectric effect in FeCo/PMN-PT/Feco trilayers prepared by electroless deposition of FeCo on PMN-PT crystals with various orientations", J. Alloys. Comp, Vol. 610, pp. 11-14, 2014. https://doi.org/10.1016/j.jallcom.2014.04.221
  24. G. Srinivasan, E. T. Rasmussen, and R. Hayes, "Magnetoelectric effects in ferrite lead Zirconate titanate layered composites: The influence of Zinc substitution in ferrites", Phys. Rev. B, Vol. 67, 014418, 2004.
  25. R. Grossinger, G. V. Duong, and R. Sato-Turtelli, "The physics of magnetoelectric composites", J. Magn. Magn. Mater., Vol. 320, pp. 1972-1977, 2008. https://doi.org/10.1016/j.jmmm.2008.02.031
  26. Z. P. Xing, J. Y. Zhai, S. X. Dong, J. F. Li, D. Viehland, and W. G. Odend, "Modeling and detection of quasi-static nanotesla magnetic field variations using magnetoelectric laminate sensor", Meas. Sci. Technol., Vol. 19, 015206, 2008. https://doi.org/10.1088/0957-0233/19/1/015206
  27. Y. J. Wang, X. G. Zhao, J. Jiao, L. H. Liu, W. N. Di, H. S. Luo, and S. W. Or., "Electrical resistance load effect on magnetoelectric coupling of magnetostrictive/piezoelectric laminate composite", J. Alloys Compd., Vol. 500, pp. 224-226, 2010. https://doi.org/10.1016/j.jallcom.2010.04.009
  28. S. Dong, J. Zhai, Z. P. Xing, J. F. Li, and D. Viehland, "Extremely low frequency response of magnetoelectric multilayer composites", Appl. Phys. Lett., Vol. 86, 102901, 2005. https://doi.org/10.1063/1.1881784
  29. J. G. Ryu, and S. J. Jeon, "Magnetoelectric characteristics on layered Ni-PZT-Ni, Co, Fe, composites for magnetic field sensor", J. Korean Inst. Electr. Electro. Mater. Eng., Vol. 28, No. 2, pp. 92-98, 2015. https://doi.org/10.4313/JKEM.2015.28.2.92
  30. J. G. Ryu, and S. T. Chung, "Load resistance influence of magnetoelectric characteristics on NiZnFe2O4+PZT composites for magnetoelectric sensor", J. Sensor Sci. & Tech., Vol. 22, No. 6, pp. 379-386, 2013. https://doi.org/10.5369/JSST.2013.22.6.379
  31. Y. J. Wang, X. G. Zhao, W. N. Di, H. S. Luo, and S. W. Or, "Magnetoelectric voltage gain effect in a long-type magnetostrictive/ piezoelectric heterostructure, Appl. Phys. Lett., Vol. 95, 1435003, 2009.