Browse > Article
http://dx.doi.org/10.5369/JSST.2015.24.3.181

Magnetoelectric Characteristics on Layered Fe78B13Si9/PZT/Fe78B13Si9 Composites for Magnetic Field Sensor  

Ryu, Ji-Goo (Department of Electronic Engineering, Pukyong National University)
Jeon, Seong-Jeub (Department of Electronic Engineering, Pukyong National University)
Publication Information
Journal of Sensor Science and Technology / v.24, no.3, 2015 , pp. 181-187 More about this Journal
Abstract
The magnetoelectric characteristics on layered $Fe_{78}B_{13}Si_9/PZT$ and $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9$($t_m=0.017$, 0.034mm) composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range and resonance frequency range. The optimal bias magnetic field $H_{dc}$ of these samples was about 23~63 Oe range. The Me coefficient of $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9(t_m=0.034mm)$ composites reaches a maximum of $186mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, f=50 Hz and a maximum of $1280mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, resonance frequency $f_r=95.5KHz$. The output voltage shows linearity proportional to ac fields $H_{ac}$ and is about U=0~130.6 mV at $H_{ac}=0{\sim}7Oe$, f=50 Hz, U=0~12.4 V at $H_{ac}=0{\sim}10Oe$, $f_r=95.5KHz$(resonance frequency). The optimal frequency(f=50 Hz) of this sample is around the utility ac frequency(f=60 Hz). Therefore, this sample will allow for ac magnetic field sensor at utility frequency and low bias magnetic fields $H_{dc}$.
Keywords
Magnetic field sensor; Magnetoelectric effect; Magnetostriction coefficient; Electromechanical coefficient; Load resistance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ce-Wen Nan, M. I. Bichurin, S. D. Dong, D. Viehland, and G. Srinivason, "Multiferroic magnetoelectric composites", J. Appl. Phys., Vol. 103, 031101, 2008.   DOI
2 J. Ryu, A. V. Carazo, K. Uchino, and H. Kim, "Piezoelectric and magnetoelectric properties of lead Zirconate Titanate/Ni-Ferrite particulate composites", J. Electroceram, Vol. 7, pp. 117-241, 2001.
3 Y. K. Fetisov, K. E. Kamentsev, A.Y. Ostashchenko, and G. Srinivasan, "Wide-band magnetoelectric characterization of a ferrite-piezoelectric multilayer using a pulsed magnetic field", Solid State Commun., Vol. 132, pp. 13-17, 2004.   DOI
4 D. V. Chashin, Y. K. Fetisov, E. V. Taftseva, and G. Srinivasan, "Magnetoelectric effects in layered samples of lead Zirconium titanate and nickel films", Solid State Commun., Vol. 148, pp. 55-58, 148.   DOI
5 G. Lawes and G. Srinivasan, "Introduction to magnetoelectric coupling and multiferroic films", J. Phys. D; Appl. Phys., Vol. 44, 243001, 2011.   DOI
6 D. Y. Huang, C. J. Lu, B. Han, X. Wang, C. X. Li, C. G. Xu, J. G. Gui, and C. G. Lin, "Giant self-biased magnetoelectric coupling characteristics of three-phase composite with endbonding structure", Appl. Phys. Lett., Vol. 105, 263502, 2014.   DOI
7 C. J. Lu, C. G. Xu, L. Wang, J. P. Gao, J. G. Gui, and C. G. Lim, "Investigation of optimized end-bonding magnetoelectric heterostructure for sensitive magnetic field sensor", Rev. Sci. Instrum., Vol. 85, pp. 115003, 2014.   DOI
8 L. Wang, Z. Du, C. Fan, L. Xu, H. Zhang, and D. Zhao, "Effect of load resistance on magnetoelectric properties in FeGa/BaTiO3/FeGa laminate composites", J. Alloys Compd., Vol. 509, pp. 7870-7873, 2011.   DOI
9 T. Kubota, T. Okazaki, N. Endo, K. Mikami and Y. Furuya, "Output characteristics in Fe-Pd/PZT/Fe-Pd magneto-electric composites with Fe-Pd thick layer", Sens. Actuator APhys., Vol. 200, pp. 11-15, 2013.   DOI
10 Y. K. Fetisov, A. A. Bush, K. E. Kamentsev, A. Y. Ostaschchenko, and G. Srinivasan, "Ferrite-piezoelectric multilayers for magnetic field sensors", IEEE Sens. J., Vol. 6, No. 4, pp. 935-938, 2006.   DOI
11 A. A. Bush, K. E. Kamentsev, V. F. Meshcheryakov, Y. K. Fetisov, D. V. Chashin, and L. Y. Fetisov, "Low-frequency magnetoelectric effect in a Galfenol-PZT planner composite structure", Tech. Phys., Vol. 54, pp. 1314-1320, 2009.   DOI
12 G. V. Duong, R. Groessinger, M. Schoenhart, and D. Bueno-Nasques, "The lock-in technique for studying magnetielectric effect", J. Magn. Magnetic Mater., Vol. 316, pp. 390-393, 2007.   DOI
13 P. Li, L. Chen, Y. Wen, D. Wang, and X. Huang, "Magnetic sensor employing piezoelectric Ceramic/Rare-earth Iron Alloy/High-Permeability FeCuNbSiB composite", IEEE Sensors conference pp. 1718-1721, 2010.
14 C. Lu, C. Xu, L. Wang, J. Gao, J. Gui, and C. Lin, "Investigation of optimized end-bonding magnetoelectric heterostructure for sensitive magnetic field sensor", Rev. Sci. Instrum., Vol. 85, pp. 115003, 2014.   DOI
15 D. A. Pan, Y. Bai, W. Y. Chu, and L. J. Qao, "Ni/PZT/Ni trilayered magnetoelectric composites synthesized by electro- deposition", J. Phys; Condens. Matter, Vol. 20, pp. 05203, 2008.
16 D. A. Pan, J. J. Tian, S. G. Zhang, J. S. Sun, A. A. Volinsky, and L. J. Qiao, "Geometry effects on magnetoelectric performance of layered Ni/PZT composites", Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., Vol. 163, pp. 114-119, 2009.   DOI
17 H. Q. Shen, Y. G. Wang, D. Xie, and J. H. Cheng, "Magnetoelectric effect in FeCo/PMN-PT/Feco trilayers prepared by electroless deposition of FeCo on PMN-PT crystals with various orientations", J. Alloys. Comp, Vol. 610, pp. 11-14, 2014.   DOI
18 D. A. Pan, Y. Bai, W. Y. Chu, and L. J. Qiao, "Magnetoelectric coupling and the hydrogen effect on Ni-PZT-Ni trilayers made by electrodeposition", Smart Mater. Struct., Vol. 16, pp. 2501-2504, 2007.   DOI
19 M. I. Bichurin, D. A. Filippov, and V. M. Petrov, "Resonance magnetoelectric effects in layered magnetostrictivepiezoelectric composites", Phys. Rev. B, Vol. 68, pp. 132408, 2003.   DOI
20 D. A. Chashin , Y. K. Fetisov, E. V. Tafintseva, and G. Srinivasan, "Magnetoelectric effects in layered samples of the Zirconium titanate and Nickel films", Solid State Commun., Vol. 148, pp. 55-58, 2008.   DOI
21 G. Srinivasan, E. T. Rasmussen, and R. Hayes, "Magnetoelectric effects in ferrite lead Zirconate titanate layered composites: The influence of Zinc substitution in ferrites", Phys. Rev. B, Vol. 67, 014418, 2004.
22 R. Grossinger, G. V. Duong, and R. Sato-Turtelli, "The physics of magnetoelectric composites", J. Magn. Magn. Mater., Vol. 320, pp. 1972-1977, 2008.   DOI
23 Z. P. Xing, J. Y. Zhai, S. X. Dong, J. F. Li, D. Viehland, and W. G. Odend, "Modeling and detection of quasi-static nanotesla magnetic field variations using magnetoelectric laminate sensor", Meas. Sci. Technol., Vol. 19, 015206, 2008.   DOI
24 Y. J. Wang, X. G. Zhao, J. Jiao, L. H. Liu, W. N. Di, H. S. Luo, and S. W. Or., "Electrical resistance load effect on magnetoelectric coupling of magnetostrictive/piezoelectric laminate composite", J. Alloys Compd., Vol. 500, pp. 224-226, 2010.   DOI
25 Y. J. Wang, X. G. Zhao, W. N. Di, H. S. Luo, and S. W. Or, "Magnetoelectric voltage gain effect in a long-type magnetostrictive/ piezoelectric heterostructure, Appl. Phys. Lett., Vol. 95, 1435003, 2009.
26 S. Dong, J. Zhai, Z. P. Xing, J. F. Li, and D. Viehland, "Extremely low frequency response of magnetoelectric multilayer composites", Appl. Phys. Lett., Vol. 86, 102901, 2005.   DOI
27 J. G. Ryu, and S. J. Jeon, "Magnetoelectric characteristics on layered Ni-PZT-Ni, Co, Fe, composites for magnetic field sensor", J. Korean Inst. Electr. Electro. Mater. Eng., Vol. 28, No. 2, pp. 92-98, 2015.   DOI
28 J. G. Ryu, and S. T. Chung, "Load resistance influence of magnetoelectric characteristics on NiZnFe2O4+PZT composites for magnetoelectric sensor", J. Sensor Sci. & Tech., Vol. 22, No. 6, pp. 379-386, 2013.   DOI
29 S. V. Suryanarayama, "Magnetoelectric interaction phenomena in materials", Bull. Mater. Sci., Vol. 17, No. 7, pp. 1259-1270, 1994.   DOI
30 Ce-Wen Nan, "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases", Phys. Rev. B, Vol. 50, pp. 6082-6068, 1994.   DOI
31 J. Ryu, S. Priya, K. Uchino, and H. E. Kim, "Magnetoelectric effect in composites of magneto striction and piezoelectric materials", J. Electroceram., Vol.8, pp. 107-119, 2002.   DOI