• Title/Summary/Keyword: Magnetic field annealing

Search Result 155, Processing Time 0.027 seconds

The Effect of Field Annealing on Magnetic Properties of Amorphous Alloy (비정질 재료의 자기특성에 미치는 자장중 열처리의 영향)

  • 김원태;장평우;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.4
    • /
    • pp.180-185
    • /
    • 1997
  • Variations of core loss and coercivity with heat treatment condition have been studied in amorphous ribbon core specimens. All measurements were performed at 10 kHz with a maximum induction of 0.1 T. With increasing annealing time, both core loss and coercivity of core specimens decreased first, reaching minimum values, and increased thereafter. Specimen heat treated in an air showed better soft magnetic properties than those treated in Ar atmosphere. The specimens annealed under magnetic field higher than 6 Oe in radial direction showed reduced core loss and coercivity. The field annealing effects were increased with increasing cooling rate near Curie temperature of the material. The specimen annealed under an applied field in perpendicular direction of the core showed increased coercivity and decreased permeability.

  • PDF

The effect of Mo addion and Magnetic field annealing on the magnetic properties, Magnetostriction and Domain structures of $Fe_{80}B_{12}Si_8$ amorphous alloy. ($Fe_{80}B_{12}Si_8$ 비정질 합금의 자구 및 자왜와 자기적 성질에 미치는 Mo 첨가와 자장 열처리 효과)

  • 고창진;강계명;송진태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.49-51
    • /
    • 1989
  • The effect of Mo elenent and annealing condition on the magnetic properties were investigated in Fe$_{80}$B$_{12}$Si$_{8}$ amorphous alloy. With increasing Mo contents, soft magnetic properties were improved by decreasing coercive force and increasing maximum permeability. These improvements were attributed to the decreasing of magnetostriction by Mo addition. The annealing treatment also improved the soft magnetic properties of (Fe$_{1-x}$ Mo$_{x}$)$_{80}$ B$_{12}$ Si$_{8}$ amorphous alloys. It could be thought that these improvements were ascribed to the relaxation of internal stress.nal stress.ess.

  • PDF

Structure and Magnetic Properties of Sm-Co(x nm)/Co(6 nm) Multi-layered Nanocomposite Films

  • Yang, Choong-Jin;You, Cai-Yin;Zhang, Zhi-Dong
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.24-25
    • /
    • 2002
  • Tthe structure and magnetic properties of Sm-Co/co films treated at various annealing temperatures and times are reported, The effects of an externally applied magnetic field during annealing, were also investigated. These result is discussed in terms of magnetization reversal of nano grains which seems to compete with the exchange interaction occurring between the nano grains. (omitted)

  • PDF

Crystallization characteristics of the amorphous Si thin films in the AMFC system (AMFC system에서의 비정질 실리콘 박막의 결정화 특성)

  • Kang Ku Hyun;Lee Seung Jae;Kim Sun Ho;Lee Sue Kyeong;Nam Seung Eui;Kim Hyoung June
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • A typical method for obtaining poly-Si films is the solid phase crystallization(SPC) of amorphous Si. Advantages of SPC are uniformity, process quality and low cost of production. However, high process temperature and long process time prevent the employment of SPC process on thermally susceptible glass substrate. In this parer, we propose a new method that applies an alternating magnetic field during crystallization annealing in an alternating magnetic field crystallization(AMFC) system for lowering process temperature and shorter process time of SPC. When we crystallized, in the case of SPC, annealing time is 24 hours at 570℃. But in the case of AMFC, annealing time is only 20 minutes at the same temperature.

Influence of a Stacked-CuPc Layer on the Performance of Organic Light-Emitting Diodes

  • Choe Youngson;Park Si Young;Park Dae Won;Kim Wonho
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • Vacuum deposited copper phthalocyanine (CuPc) was placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in a multi-layered, organic, light-emitting diode (OLEOs). The well-stacked CuPc layer increased the stability and efficiency of the devices. Thermal annealing after CuPc deposition and magnetic field treatment during CuPc deposition were performed to obtain a stacked-CuPc layer; the former increased the stacking density of the CuPc molecules and the alignment of the CuPc film. Thermal annealing at about 100$^{circ}C$ increased the current flow through the CuPc layer by over 25$\%$. Surface roughness decreased from 4.12 to 3.65 nm and spikes were lowered at the film surface as well. However, magnetic field treatment during deposition was less effective than thermal treatment. Eventually, a higher luminescence at a given voltage was obtained when a thermally-annealed CuPc layer was placed in the present, multi-layered, ITO/CuPc/NPD/Alq3/LiF/AI devices. Thermal annealing at about 100$^{circ}C$ for 3 h produced the most efficient, multi-layered EL devices in the present study.

Magnetic Domain Structure in Laser-Annealed NiFe/FeMn Bilayers (FeMn/NiFe에서 Laser 열처리에 의한 자구연구)

  • Choi, S.D.;Kim, S.W.;Jin, D.H.;Lee, M.S.;Ahn, J.H.;Joo, H.W.;Kim, Y.S.;Lee, K.A.;Lee, S.S.;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.224-227
    • /
    • 2004
  • We have studied local magnetization reversal by laser annealing in exchange biased NiFe/FeMn bilayer. Local magnetization reversal was performed by using the DPSS laser under external magnetic field of 600G. When the laser illuminated the patterned film with the power of above 300 mW during 15 min, a magnetoresistance (MR) curve with symmetric peaks at the opposite field was obtained due to the local reversal of exchange biasing. The direction of exchange anisotropy in the locally reversed region can be restored by local laser annealing under alternating magnetic field, even if its MR peak was reduced by the damage and interdiffusion. The magnetic domain structure of the locally reversed region was measured by MFM. The new domains were generated by laser annealing near the exposed area.

Surface Morphology and Magnetic Properties of NiFe Thin Films (NiFe 박막의 표면형상과 자기특성)

  • 이원재;백성관;민복기;송재성;김현식;이동윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.519-522
    • /
    • 2000
  • The correlation of surface morphology and magnetic property of NiFe thin films on Si(001) deposited by RF-magnetron sputter has been investigated, using AFM, XRD and MR measurements. During short field annealing for 15 min, there was no significant change in XRD patterns of NiFe thin films. However, the degree of surface roughness was changed with increasing annealing temperature. With variation of surface roughness, there was significant difference in MR characteristics of NiFe thin films. In the case of as-deposited NiFe thin films(T$\_$G/ = 150$^{\circ}C$) and UFA400 (T$\_$A/ = 400$^{\circ}C$) having smooth surface, good linearity of MR Curve was observed.

  • PDF

Rotation Effect of In-plane FM layer on IrMn Based GMR-SV Film

  • Khajidmaa, Purevdorj;Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • The magnetoresistance (MR) properties of antiferromagnetic (AFM) IrMn based giant magnetoresistance-spin valve (GMR-SV) was investigated in view point of the artificial rotation effect of ferromagnetic (FM) layer in the plane induced by an applied field during the post annealing temperature. The MR curves measured with an azimuthal angle region of ${\phi}=0^{\circ}-360^{\circ}$ are depended on the annealing temperature and the magnetization easy axis of two free NiFe layers and two pinned NiFe layers in dual-type GMR-SV film. Especially, the annealing temperature and sample rotation angle(${\theta}$ ) maintained to the magnetic sensitivity (MS) of 1.4 %/Oe with an isotropic region angle of $110^{\circ}$ are $100^{\circ}C$ and $90^{\circ}$, respectively.

The Second Annealing Effect on Giant Magnetoresistance Properties of PtMn Based Spin Valve (이차 열처리가 PtMn계 스핀밸브의 거대자기저항 특성에 미치는 영향)

  • 김광윤;김민정;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.72-77
    • /
    • 2001
  • Top spin valve films with PtMn antiferromagnetic layers were deposited using a multi-target dc magnetron sputtering in (100)Si substrates overcoated with 500 $\AA$ of Al$_2$O$_3$. Firstly, the post-deposition annealing was performed at 270$\^{C}$ in a unidirectional magnetic field of 3 kOe to induce the crystallographic transformation of the PtMn layer from a fcc (111) to a fct (111) structure. Secondly, the spin valve films were annealed without magnetic fields and magnetic properties were measured. In Si/A1$_2$O$_3$ (500$\AA$)/Ta(50$\AA$)NiFe(40$\AA$)/CoFe(17$\AA$)/Cu(28$\AA$)/CoFe (30$\AA$)PtMn(200$\AA$)Ta(50$\AA$) top spin valve samples, the MR ratio decreased slowly with increasing annealing temperature up to 325$\^{C}$. But above 325$\^{C}$, the MR ratio decreased rapidly to 1%, due to a collapse of the exchange coupling between a antiferromagnetic layer and a pinned layer with increasing annealing temperature. Also above 325$\^{C}$, the exchange biased field rapidly decreased and the interlayer coupling field rapidly increased with increasing annealing temperature. A change in the interlayer coupling field was resulted from the increase in interface roughness due to Mn-interdiffusion through the grain boundaries. We confirmed the temperature in changing magnetic properties agreed well with the blocking temperature of PtMn based spin valve structure.

  • PDF