• 제목/요약/키워드: Magnetic Flux Distribution

검색결과 270건 처리시간 0.023초

Theoretical Analysis of Magnetic Flux Density Distribution in an Electro-Magnetic Chuck

  • Kim, Chung-Kyun
    • KSTLE International Journal
    • /
    • 제2권2호
    • /
    • pp.114-119
    • /
    • 2001
  • The distribution of magnetic flux density of electro-magnetic chucks may clarify the clamping characteristics, which is strongly related to the machining efficiency and machining accuracy in surface grinding machine. Therefore the distribution of the normal and the tangential components of magnetic flux density have been analyzed theoretically. It appears that the normal component of magnetic flux density increases and the tangential component of magnetic flux density increases as the ratio of the separator width to the pitch, e/p decreases. The results seem to increase the stability and uniformity of normal component of magnetic flux density for the decreased e/p.

  • PDF

MIVB 용접용 개폐형 자속발생기에 의한 자원밀도분포의 수치해석 (Numerical Analysis of Magnetic Flux Density Distribution by an Openable Magnetic Flux Generator for MIAB Welding)

  • 구진모;김재웅
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.50-56
    • /
    • 2004
  • MlAB(magnetically impelled arc butt) welding is a sort of pressure welding method by melting two pipe sections with high speed rotating arc and upsetting two pipes in the axial direction. The electro-magnetic force, the driving force of the arc rotation, is generated by interaction of arc current and magnetic field induced from the magnetic flux generator in the welding system. In this study, an openable coil system for the generation of magnetic flux and a 3-dimensional numerical model for analyzing the electro-magnetic field were proposed. Through the fundamental numerical analyses, a magnetic concentrator was adopted for smoothing the magnetic flux density distribution in the circumferential direction. And then a series of numerical analysis were performed for investigating the effect of system parameters on the magnetic flux density distribution in the interested welding area.. Numerical quantitative analyses showed that magnetic flux density distribution generated from the proposed coil system is mainly dependent on the exciting current in the coil and the position of coil or concentrator from the pipe outer surface. And the gap between pipe ends and arc current are also considered as important factors on arc rotating behavior.

전자척에서 자속밀도 해석에 관한 연구 (Analysis of Magnetic Flux Density in Electro-Magnetic Chucks)

  • 김청균
    • 한국정밀공학회지
    • /
    • 제9권2호
    • /
    • pp.29-35
    • /
    • 1992
  • The distribution of magnetic flux density of electro-magnetic chucks may clarify the clamping characteristics which are strongly related to the machining efficiency and machining accuracy in a surface grinder. Therefore the distribution of the normal and the tangential components of magnetic flux density has been analyzed theoretically. It appears that the normal and the tangential components of magnetic flux density increase as the ratio of the separator width to the pitch e/p decreases. The results seem to increase the uniformity and stability of normal component of magnetic flux density for the decreased e/p.

  • PDF

유한요소법에 의한 변압기의 자속분포 해석에 관한 연구 (Study on the magnetic flux distribution of transformer by the use of finite element method)

  • 임달호;현동석;이철직
    • 전기의세계
    • /
    • 제29권4호
    • /
    • pp.247-255
    • /
    • 1980
  • In this study, an application of Finite Element Method which, in principle, based on variational calculus has been presented for the two-dimensional analysis of magnetic flux distribution in the shell type core of single phase transformer. The necessary stationarity condition of energy functional and boundary conditions were determined under the assumptions that the electromagnetic field considered is stationary and that the effect of eddy current is negligible. In the process of application the domain of magnetic field was divided into triangle subsectional elements and then the matrix equations were constructed for the respective triangular element and for those of all after the manipulation of minimization process to the vector potential of magnetic field at the each vertex of the element. Furthermore the numerical computation for the equations was guided by the Gaussian Elimination Methods. As the results obtained, it is found that the aspect of magnetic flux distribution inside the core as well as the leakage flux profile at the vicinity of the inner leg of the core is not much different from the well-known distribution profile of magnetic flux, however, the procedure shows to possess the merit of the uniquely deterministic nature for the flux distribution at the desired points.

  • PDF

자속밀도 가중치에 의한 자유곡면 자기연마 공구곡률 선정 (Determination of Curvature Radius of Magnetic Tool Using Weighted Magnetic Flux Density in Magnetic Abrasive Polishing)

  • 손출배;유만희;곽재섭
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.69-75
    • /
    • 2013
  • During the magnetic abrasive polishing of a curved surface, the improvement in surface roughness varies with the maximum value and distribution of magnetic flux density. Thus, in this study, the magnetic flux density on the curved surface was simulated according to curvature radii of magnetic tool. As a result of the simulation, the 14.5mm of the magnetic tool had a higher maximum magnetic flux density and it showed a large weighted magnetic flux density. The weighted magnetic flux density means the highest value for the magnetic flux density in the curvature of the magnetic tool. From the experimental verification, the better improvement in surface roughness was observed on wider area at the 14.5mm radius of the magnetic tool than other radii.

누설자속탐상법의 결함검출능력 향상에 관한 연구 (Improvement in Probability of Detection for Leakage Magnetic Flux Methods)

  • 이진이
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.13-18
    • /
    • 2004
  • It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. Leakage magnetic flux near the crack on the specimen could be amplified by 3-dimensional magnetic fluid and zoom in and out of measurement area. This study introduces the experimental consideration of the effects of lens for concentrating of magnetic flux. The experimental results showed that the magnetic fluid has sufficient lens effect for magnetic camera and effect of improvement in probability of detection.

  • PDF

Tubular motor의 자속분포 특성 해석을 위한 유한요소법 적용연구 (A study on the application of finite element method to analysis of the magnetic flux distribution characteristics of the tubular motor)

  • 임달호;임태빈
    • 전기의세계
    • /
    • 제30권12호
    • /
    • pp.811-816
    • /
    • 1981
  • In this paper, the finite element method is applied to find the flux distribution of the magnetic field in the end region of the tubular motor. In order to analyze two-dimensional flux distribution, the r-z domain to be analyzed is subdivided into 56 nodes, 84 elements. In the case of wt=O and .pi./2, the flux distribution is shifted to the edge with frequency (w) and time (t) increase in the edge and the air gap. It is proved that this study does fit the actual phenomena.

  • PDF

Design and Analysis of Lorentz Force-type Magnetic Bearing Based on High Precision and Low Power Consumption

  • Xu, Guofeng;Cai, Yuanwen;Ren, Yuan;Xin, Chaojun;Fan, Yahong;Hu, Dengliang
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.203-213
    • /
    • 2017
  • Magnetically suspended control & sensitive gyroscope (MSCSG) is a novel type of gyroscope with the integration of attitude control and attitude angular measurement. To improve the precision and reduce the power consumption of Lorentz Force-type Magnetic Bearing (LFMB), the air gap flux density distribution of LFMB has been studied. The uniformity of air gap flux density is defined to qualify the uniform degree of the air gap flux density distribution. Considering the consumption, the average value of flux density is defined as well. Some optimal designs and analyses of LFMB are carried out by finite element simulation. The strength of the permanent magnet is taken into consideration during the machining process. To verify the design and simulation, a high-precision instrument is employed to measure the 3-dimensional magnetic flux density of LFMB. After measurement and calculation, the uniform degree of magnetic flux density distribution reaches 0.978 and the average value of the flux density is 0.482T. Experimental results show that the optimal design is effective and some useful advice can be obtained for further research.

강판의 유도가열에서 공정변수가 온도 및 자속분포에 미치는 영향에 관한 연구 (A Study of the Effects of Process Variables on Temperature and Magnetic-flux Distribution in Induction Heating of Steel Plate)

  • 배강열;이태환;양영수
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.526-533
    • /
    • 2001
  • Induction heating of float metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. In this study, the induction heating of a steel plate to simulate the line heating is investigated by means of the Finite Element Analysis of the magnetic field and temperature distribution. A numerical model is used to calculate temperature distribution within the steel plate during the induction heating with a specially designed inductor. The effects of materital properties depending on the temperature and magnetic field are taken into consideration in an iterative manner. The simulation results show good magnetic field with experimental data and provide good understanding of the process. Since the numerical model demonstrates to be suitable for analysis of induction heating process, the effects of air gap and frequency on magnetic-flux and power-density distribution are also investigated. It is revealed that these process parameters have an important roles on the electro-magnetic field and power-density distribution governing the temperature distribution of the plate.

  • PDF

정현적으로 착자된 영구자석을 갖는 마그네틱 위치센서 설계 (Design of Rotary Magnetic Position Sensor with Sinusoidally Magnetized Permanent Magnet)

  • 정승호;류세현;권병일
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.506-513
    • /
    • 2007
  • This paper proposes a rotary magnetic position sensor which has a sinusoidally magnetized permanent magnet with a small number of poles. To make the sinusoidal magnetic flux density distribution from the permanent magnet, a magnetizing future is optimized by the DOE(Design of Experiments) method. The magnetization process is analyzed using the Preisach model and 2 dimensional finite element method. The magnetic flux density distribution from the magnetized permanent magnet is very similar to ideal sine wave. The simulation result of the magnetic flux density distribution is compared with the experimental one. Also the availability of the proposed rotary type magnetic position sensor is confirmed by position calculation technique.