• 제목/요약/키워드: Magnet Flux

검색결과 793건 처리시간 0.024초

영구 자석과 전자석의 상호작용을 이용한 초정밀 양방향 구동기 설계 (Design of ultraprecision hi-directional actuator for nm using a permanent magnet and electromagnet)

  • 김기현;권대갑
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.147-154
    • /
    • 2005
  • A precision hi-directional actuator for a high precision leveling system with $Z{\Theta}_x{\Theta}_y$ motions is proposed and designed in this paper. The actuator is composed of a force generation structure, a guide mechanism, and a symmetric structure. At first, its driving force is generated by a change of flux in air gaps by permanent and changeable flux. The permanent flux is generated by a permanent magnet. The changeable flux is created by variable current flowing through coil. The combination of permanent and changeable flux makes various flux densities in air gaps between moving part and fixed yokes. And then, the difference between flux densities in lower and upper gaps creates forces fur the $bi-direction({\pm}z)$ motion. The guide mechanism of this actuator is composed of two circular plates and one shaft. Reducing motions generated by forces except z-motion, these circular plates endow the actuator with high stiffness for fast settling time. And the function of the shaft is to transfer motion to an object. At last, total body has a symmetric structure to be stable on thermal error. The actuator is designed by MAXWELL 2D and ProMECHANICA. The designed actuator is evaluated by 8nm laser doppler vibrometer, dynamic signal analyzer, and simple PID controller.

Presentation of a Novel E-Core Transverse-Flux Permanent Magnet Linear Motor and Its Magnetic Field Analysis Based on Schwarz-Christoffel Mapping Method

  • Fu, Dong-Shan;Xu, Yan-Liang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1963-1969
    • /
    • 2017
  • In order to overcome the manufacturing difficulty of the transverse-flux permanent magnet linear motor (TFPMLM) and enhance its performance much better, a novel TFPMLM with E-core and 3 dimension (3D) magnetic structures is proposed in this paper. Firstly, its basic structure and operating principle are presented. Then the equivalent 2D configuration of the TFPMLM is transformed, so that the Schwarz-Christoffel (SC) mapping method can be used to analyze the motor. Furthermore, the air gap flux density distribution is solved by SC mapping method, based on which, the EMF waveform, no-load cogging force waveform and load force waveform are obtained. Finally, the prototyped TLPMLM is manufactured and the results are obtained from the experiment and 3D FEM, respectively, which are used to compare with those from SC mapping method.

성능 개선을 위한 자속 역전식 기기의 설계 기법 (A Novel Design Technique to Improve the Performance of Flux-Reversal Machine)

  • 김태형;이주;이상돈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권12호
    • /
    • pp.700-708
    • /
    • 2004
  • Flux-reversal machine (FRM) is a new doubly-salient stator-permanent magnet (PM) machine with flux linkage reversal in the stator concentrated windings. It can operate in both motoring and generating modes. In this paper, a novel design technique to improve the performance of FRM is proposed. Proposed techniques have a new stator winding and a magnet arrangement method. The stator and rotor shape with a concave type and a flux barrier are also proposed. According to the experimental results, it is shown that the proposed FRM have an improved performance.

해석적 방법을 이용한 축 방향 자속 영구자석 커플링의 과부하 자계특성해석 (Magnetic Characteristic Analysis of Axial Flux Permanent Magnet Coupling based on Analytical method according to overload)

  • 장강현;구민모;최장영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.744-745
    • /
    • 2015
  • This paper deals with magnetic characteristic analysis of axial flux permanent magnet coupling according to overload using analytical method. When magnet coupling has a slip, the eddy current induced in PM with conductivity. This eddy current make a distorted flux density. In this paper, we analyze the distorted flux density. The analytical results are validated extensively by comparing with 3d finite element analysis.

  • PDF

영구자석 여자 횡축형 선형전동기의 추력맥동 저감 제어기법 (Control Method for Minimizing Thrust Ripple of PM Excited Transverse Flux Linear Motor)

  • 안종보;강도현;김지원;정수진;임태윤;박준호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권1호
    • /
    • pp.16-23
    • /
    • 2004
  • Permanent magnet-excited transverse flux linear motor(TFLM) is known to have more excellent ratio of force to weight than any other linear motors. But, thrust generated by phase current is non-linear with regard to current and relative position like switched reluctance motor. This makes current and speed controller design difficult. This paper presents a method on minimization of thrust ripple of permanent magnet-excited transverse flux linear motor. Using genetic algorithm(GA), optimal current waveform can be found under the constraint conditions such as current limit, minimum of ohmic loss and limited rate of change of current etc. The effectiveness is verified through computer simulation and experimental test results.

회전자부의 자속장벽 설치를 통한 IPM type BLDC 전동기 코깅 토오크 저감에 대한 연구 (Reducing Cogging Torque in Interior Permanent Magnet type BLDC motor by Flux barriers in the rotor)

  • 윤근영;양병렬;류세현;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.64-66
    • /
    • 2004
  • Several techniques have been adopted in motor design of interior permanent magnet (IPM) type brushless DC (BLDC) motor to minimize cogging torque. IPM type motor has better ability in the centralization of flux than surface-mounted permanent magnet (SPM) type BLDC motor. So, the structure of IPM type BLDC motor has high saliency ratios that produce additional torque. However, this structure has a significant cogging torque that generates both vibration and noise. This paper describes new technique of the flux barriers design for reduction of cogging torque of IPM type BLDC motor. To reduce the cogging torque, flux barriers are applied in the rotor. Changing the number of barrier, the cogging torque is analyzed by finite clement method(FEM).

  • PDF

Design and Analysis of Axial Flux Permanent Magnet Synchronous Machine

  • Jo, Won-Young;Lee, In-Jae;Cho, Yun-Hyun;Koo, Dae-Hyun;Chun, Yon-Do
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.61-67
    • /
    • 2007
  • In this article, a special kind of axial flux permanent magnet machine has proved to be suitable for high torque and low speed applications. An innovative design of the machine has been proposed in order to make the machine suitable for traction applications by means of field-weakening. The aim of this paper is to analyze, in general terms, the basic equations that describe the operating conditions of such machines. Optimal sizes for design can be obtained by calculating the power density and the air-gap flux density, etc.

해석적 방법을 통한 X-Y 리니어 모터의 특성해석에 관한 연구 (A study of characteristic analysis of X-Y linear motor using analysis method)

  • 이동엽;황예;한광규;김규탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.29-31
    • /
    • 2005
  • The effective flux of X-Y linear motor is calculated with analytical method according to the arrangement of permanent magnet. In order to reduce leakage flux due to increased effective flux, the distance of the permanent magnet is adjusted. When the distance is 2[mm] between two magnets, the leakage flux is greatly reduced, and it is expected that if the segment of permanent magnet magnetized to x and y direction is added, the motor performance will be enhanced.

  • PDF

양측면식 평판형 영구 자석 동기 전동기의 오버행 효과에 관한 연구 (The Study of Overhang Effect of a Novel Axial Flux Permanent Magnet Motor with a Double sided Airgap)

  • 조원영;이인재;김병국;김태현;황동원;조윤현;전연도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1174-1176
    • /
    • 2005
  • The permanent magnet(PM) overhang effect has been generally used to enhance the linkage flux in the motor. In this paper, we quantitatively investigate the PM overhang effect in the new type axial flux permanent magnet(AFPM) motor with a double-sided airgap. The motor performances such as linkage flux, back electromotive force(EMF), magnetic force, etc. were analyzed according to the variation of the overhang angle. From the results, we can select the proper overhang angle of PM which improves the performance of the AFPM motor.

  • PDF