• Title/Summary/Keyword: Magnesium nitrate

Search Result 76, Processing Time 0.023 seconds

Effects of Nutrient Solution Temperatures on the Growth and Quality of Welsh Onion (Allium fistulosum L.) in Winter Season (겨울철 배양액 온도가 파의 생육 및 품질에 미치는 영향)

  • 박권우;이정훈
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.144-151
    • /
    • 1995
  • This experiment was carried out to investigate the effect of different nutrient solution temperatures on the growth and quality of welsh onion in winter season. The fresh weight increased with the increase of temperature within the range of 13-23$^{\circ}C$. The top length was longer 18 and 23$^{\circ}C$ than at 13$^{\circ}C$, the dry weight was the highest at 18$^{\circ}C$. The potassium content in plant was the highest at 18$^{\circ}C$, calcium and magnesium contents were higher at 13 and 18$^{\circ}C$ than at 23$^{\circ}C$. The vitamin C content decreased with the increase of nutrient solution temperature, but there was no statistical significance within treatments. The pyruvic acid was higher at 13 and 18$^{\circ}C$ than at 23$^{\circ}C$, while nitrate content was lower at 13 and 18$^{\circ}C$ than 23$^{\circ}C$. Therefore, for growth and quality of welsh onion, it was concluded that 18$^{\circ}C$ may be suitable nutrient solution temperature in winter season.

  • PDF

Seasonal Change in the Soil Chemical Properties from Sweet Persimmon Orchard in Gyeongnam Province (경남지역 단감 재배 토양의 화학성 변화 평가)

  • Lee, Young-Han;Choi, Seong-Tae;Lee, Seong-Tae;Hong, Kang-Pyo;Song, Won-Doo;Lee, Jin-Ho;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.572-577
    • /
    • 2010
  • Field monitoring was performed to evaluate the soil chemical properties of 31 sweet persimmon orchard soil samples every two months from April to October in 2008 at Gyeongnam Province. Soil chemical properties such as pH, organic matter, available phosphate, exchangeable potassium, exchangeable calcium, exchangeable magnesium, exchangeable sodium, ammonium nitrogen, and nitrate nitrogen were analyzed. The soil chemical properties of both top soil, and subsoil showed that soil pH was significantly increased whereas ammonium nitrogen, and nitrate nitrogen were significantly decreased. The insufficient levels of nutrients in top soil, and subsoil were higher in 69.4%, and 84.7% for pH, 63.7%, and 84.7% for organic matter compared to optimum range. Meanwhile, the excessive levels of available phosphate showed 70.2% in top soil, and 46.8% in subsoil compared to optimum range. The experimental results showed that the optimum fertilization based on soil testing was the most important thing in soil nutrients management for sweet persimmon.

Sensing NO3-N and K Ions in Hydroponic Solution Using Ion-Selective Membranes (이온선택성 멤브레인을 이용한 양액 내 질산태 질소 및 칼륨 측정)

  • Kim, Won-Kyung;Park, Tu-San;Kim, Young-Joo;Roh, Mi-Young;Cho, Seong-In;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.343-349
    • /
    • 2010
  • Rapid on-site sensing of nitrate-nitrogen and potassium ions in hydroponic solution would increase the efficiency of nutrient use for greenhouse crops cultivated in closed hydroponic systems while reducing the potential for environmental pollution in water and soil. Ion-selective electrodes (ISEs) are a promising approach because of their small size, rapid response, and the ability to directly measure the analyte. The capabilities of the ISEs for sensing nitrate and potassium in hydroponic solution can be affected by the presence of other ions such as calcium, magnesium, sulfate, sodium, and chloride in the solution itself. This study was conducted to investigate the applicability of two ISEs consisting of TDDA-NPOE and valinomycin-DOS PVC membranes for quantitative determinations of $NO_3$-N and K in hydroponic solution. Nine hydroponic solutions were prepared by diluting highly concentrated paprika hydroponic solution to provide a concentration range of 3 to 400 mg/L for $NO_3$-N and K. Two of the calibration curves relating membrane response and nutrient concentration provided coefficients of determination ($R^2$) > 0.98 and standard errors of calibration (SEC) of < 3.79 mV. The use of the direct potentiometry method, in conjunction with an one-point EMF compensation technique, was feasible for measuring $NO_3$-N and K in paprika hydroponic solution due to almost 1:1 relationships and high coefficients of determination ($R^2$ > 0.97) between the levels of $NO_3$-N and K obtained with the ion-selective electrodes and standard instruments. However, even though there were strong linear relationships ($R^2$ > 0.94) between the $NO_3$-N and K concentrations determined by the Gran's plot-based multiple standard addition method and by standard instruments, hydroponic $NO_3$-N concentrations measured with the ISEs, on average, were about 10% higher than those obtained with the automated analyzer whereas the K ISE predicted about 59% lower K than did the ICP spectrometer, probably due to no compensation for a difference between actual and expected concentrations of standard solutions directly prepared.

Determination of Mineral Nutrient Concentrations in Fish Growing Water and Lettuce Leaf for Hydroball Aquaphonics (하이드로볼 배지경 아쿠아포닉스에서 사육수 및 상추 잎의 무기이온 농도 구명)

  • Lee, Hyunjin;Choi, Kiyoung;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.293-305
    • /
    • 2020
  • This experiment was aimed to identify concentrations of mineral nutrients in leaf lettuce (Lactuca sativa) grown on hydroball aquaponics and in the water for growing fish by conducting two experiments. The experiment I (Expt. I) was conducted with 12 fishes (F12) with and without filter, hydroball and plants (H12 (12 fishes, hydroball), FHP12 (12 fishes, filter, hydroball, 6 plants) and HP12 (12 fishes, hydroball, 6 plants)), and the experiment II (Expt. II) was with and without plants (FH15 (15 fishes, filter, hydroball), FHP15 (15 fishes, filter, hydroball, 6 plants)). The pH level in the water of all the treatments was decreased during the growing period, and the pH and EC of the water were lower in all the treatment with plants than those without plants in both Expt. I and Expt. II. When compared with adequate nutrient concentrations for hydroponics, nitrate nitrogen (NO3-N) and phosphorus (P) concentrations in the fish growing water were higher under the FHP15 treatment in Expt. II; however, potassium (K), calcium (Ca), and magnesium (Mg) were only 16, 49, and 82% of hydroponics, representatively, and iron (Fe) was not detected. The fresh weight of lettuce harvested from the FHP15 treatment was 38 g, only a 30% of marketable lettuce yield. The T-N and P contents of the leaf tissue grown under the FHP15 treatment were close to the optimal level; however, the K, Ca, and iron (Fe) contents were less than the optimal with no deficiency symptom.

Refinement of the manganese nitrate solution prepared by leaching the reduced Ferromanganeses dust with nitric acid. (용해도 차이를 이용한 질산망간 용액의 정제)

  • Cho Young-Keun;Song Young-Jun;Lee Gye-Seung;Shin Kang-Ho;Kim Hyung-Seok;Kim Yun-Che;Cho Dong-Sung
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • Mn was extracted by using a nitric acid from the reduced ferromanganese dust and the basic experiments were taken to refine the manganese nitrate solution by means of precipitation of Ca, Mg oxalate. The dust was generated in AOD process producing a medium-low carbon ferromanganese and collected in the bag filter. Manganese oxide content in the dust was about 90% and its phase was confirmed as $Mn_3$$O_4$. $Mn_3$$O_4$ in the dust was reduced to MnO by roasting with activated charcoal. The main impurities in the extracted solution prepared by leaching the reduced dust with nitric acid were Na, K, Fe, Si, Ca, Mg etc. Among them, Fe was removed by controlling pH of the solution more than 4 and precipitating $Fe(OH)_3$, simultaneously silicious material solved in the solution was removed by co-precipitation with the ferric hydroxide. Addition of 150 g reduced dust into 4N HNO3 solution 1$\ell$ was appropriate to control the pH of the solution to pH 4. To differ greatly the solubilities of manganese oxalate and calcium or magnesium oxalate in a solution containing a high concentration of Mn, pH of 4 or less and addition of ($NH_4$)$_2$$C_2$$O_4$ in equivalent with Ca and Mg are recommended. At this time, the higher temperature was the shorter the precipitation reaction time was needed.

Studies on the Liquid Manure Application for Silage Corn (사일리지용 옥수수에 대한 액상분뇨 시비연구)

  • Shin, Dong-Eun;Kim, Dong-Am;Choi, Hong-Lim;Song, Kwan-Cheol;Lee, Hyuk-Ho;Kim, Weon-Ho;Chung, Eui-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.22-30
    • /
    • 1999
  • This experiment was carried out to determine the forage yield and mineral contents of silage corn(Zea mays L.), and N balance, soil chemical characteristics and nitrate-N level in infiltration water by different types and N rates of liquid manure applied. Seven treatments consisting of chemical fertilizer $200kg\;N;ha^{-1}$, liquid cattle manure 200, 320 and $440kg\;N;ha^{-1}$, liquid swine manure 200, 320 and $440kg\;N;ha^{-1}$ were arranged in a randomized complete block design with three replications. The results obtained at National Livestock Research Institute, RDA, in Suweon from May 1997 to Aug. 1997 are summarized as follows : There were no significant differences in percentage of dry matter among the treatments, but significant dry matter yield differences were found (P<0.05), and also the mean dry matter yield of liquid swine manure plot was higher than that of liquid cattle manure plot. Potassium, calcium and magnesium contents of silage corn increased with increasing liquid manure application rates (P<0.05). Nitrate-N content of silage corn in the liquid cattle manure treatments was not influenced by liquid manure application rates, but that in the liquid swine manure treatments increased with increasing the N rates of liquid manure application. pH and contents of exchangeable canons of the soil after experiment were raised by increasing the amount of liquid manure application. Available $P_2O_5$ content in topsoil(0-10cm) was highest as $340mg\;kg^{-1}$ at the plot of liquid swine manure $440kg\;N;ha^{-1}$. Concentration of nitrate-N in infiltration water increased at the plot of liquid swine manure $440kg\;N;ha^{-1}$. Amount of nitrogen balance increased with increasing liquid manure application rates. Based on the results of this experiment, it is suggested that the mean dry matter yield of liquid swine manure plot was higher than that of liquid cattle manure plot, and the amount of nitrogen balance increased with increasing liquid manure application.

  • PDF

Effects of Nitrate Electrolyte as the MAO process for Ceramic Coating treatments of AZ31 alloy (MAO법을 이용한 산화피막처리에서 질산염 전해액성분 첨가에 따른 AZ31합금의 표면코팅 특성)

  • Cho, Young-Hee;Jang, Kyong-Soo;Park, Sei-He;Lee, Ho-Jeong;Lee, Tae-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4365-4370
    • /
    • 2012
  • AZ31 Mg alloy were coated by Macro Arc Oxidation(MAO) with 3 types of electrolyte and various coating times at 4A/$cm^2$. The Surface morphology of coatings became lager pores and surface crack initiated as the coating time increased. The thickness and micro-hardness of coatings increased as the coating time increased. also. The phase of coatings on AZ31 alloy consisted of MgO, $Mg_2SiO_4$ and $MgAl_2O_4$ oxides. The salt spray corrosion resistance of coated AZ31 alloys revealed excellent corrosion resistance in 5% NaCl solution for 168hr.

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Jeong, Yong-Kwang;Cho, Dong-Hee;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2523-2528
    • /
    • 2012
  • Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.

Culture Parameters for Nonactin Production by Streptomyces viridochromogenes JM-4151

  • Lee, Sang-Han;Lee, Dong-Sun;Lee, Jin-Man;Kim, Tae-Ho;Kim, Jong-Guk;Han, Kab-Cho;Lee, Jin-Sik;Kwon, Gi-Seok
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.7-10
    • /
    • 2001
  • Nonactin is the parent compound of a group of ionophore antibiotics, that known as the macrotetrolides. In previous report, in th course of screening superoxide radical-generating compounds from microbial sources, we first screened Streptomyces viridochromogenes JM-4151 that produces nonactin. It was proved that nonactin is superoxide radical-producing compound. In present study, we examined the optimal culture conditions of nonacin. Th optimal culture conditions for nonactin production were as follows: 1% soluble starch, 1% yeast extract, 0.2% ammonium nitrate, 0.06% magnesium sulfate, 0.2% calcium carbonate, initial pH 7.0 at 28$^{\circ}C$ for 96 h. The highest nonactin production was achieved in the production medium of initial pH7.0 at 28$^{\circ}C$ for 96h. The threshold level of dissolved oxygen was found to be above 33.2% at 28$^{\circ}C$ when 1% soluble starch was used as a carbon source. These results suggest that S. viridochromogenes JM-4151 might be a possible strain for industrial nonactin producer.

  • PDF

Biological Active Substance Produced by a Strain of Streptomyces sp. (Part.III) Purification and Nutritional Requirement. (Streptomyces 속 균주가 생성한 물질의 생물활성 (제삼보) 정제 및 영양요구성)

  • 송방호;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.1
    • /
    • pp.36-45
    • /
    • 1977
  • A piscicidal substance was isolated from the culture medium of Streptomyces umbrosus by avicel column chromatography and avicel thin layer chromatography after extration with chroloform. Bluegreen fluorescence was emitted under UV irradiation. Factors which govern toxin production and nutrition requirement for high toxin titres were observed. Nutritional uptake for toxin production was not curresponded with that for cell growth. Alanine, valine, serine asparagine, arginine, histidine, urea and sodium nitrate as a carbon source and glucose, mannose, rhamnose, xylose, arabitol and starch as a carbon source were recognized as a favorable nutrient for high toxin production. Magnesium was essential factor whereas vitamins were not of effective. Most of toxin was formed simultaneously with cell growth in esponential phase. Maximal production was observed for six day culture at 3$0^{\circ}C$. Tissues of gill, kidney and pnacreas in Cyprinus carpio were denatured extreamly after treating with the substance. Atrophied nucleous, indented membrane and degradated cytoplasm with necrotic affectness were noted on each tissue. The chemical formula of the substance was designated as $C_{38}$ $H_{66}$ $NO_4$.

  • PDF