• 제목/요약/키워드: Macro-analysis

검색결과 1,106건 처리시간 0.026초

Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method (유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측)

  • Lim, Jeong-Su;Cho, Hee-Ju;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제19권4호
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

Development of Macro Element for the Analysis of Prestressed Concrete Box Girder Bridges (프리스트레이트 콘크리트 박스거더교량 해석을 위한 매크로요소의 개발 및 유한요소 정식화(1))

  • 오병환;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.436-441
    • /
    • 1997
  • A Formulation based on macroelement concept is developed to analysis the prestressed concrete box girder bridges. The proposed method enables to model the arbitrary shapes and boundary conditions of prestressed concrete box girder bridges. The validity of the algoriyhm is demonstrated through comparisons with other results.

  • PDF

Outage Probability Analysis of Macro Diversity Combining Based on Stochastic Geometry (매크로 다이버시티 결합의 확률 기하 이론 기반 Outage 확률 분석)

  • Zihan, Ewaldo;Choi, Kae-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제9권2호
    • /
    • pp.187-194
    • /
    • 2014
  • In this paper, we analyze the outage probability of macro diversity combining in cellular networks in consideration of aggregate interference from other mobile stations (MSs). Different from existing works analyzing the outage probability of macro diversity combining, we focus on a diversity gain attained by selecting a base station (BS) subject to relatively low aggregate interference. In our model, MSs are randomly located according to a Poisson point process. The outage probability is analyzed by approximating the multivariate distribution of aggregate interferences on multiple BSs by a multivariate lognormal distribution.

A parameter calibration method for PFC simulation: Development and a case study of limestone

  • Xu, Z.H.;Wang, W.Y.;Lin, P.;Xiong, Y.;Liu, Z.Y.;He, S.J.
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.97-108
    • /
    • 2020
  • The time-consuming and less objectivity are the main problems of conventional micromechanical parameters calibration method of Particle Flow Code simulations. Thus this study aims to address these two limitation of the conventional "trial-and-error" method. A new calibration method for the linear parallel bond model (CM-LPBM) is proposed. First, numerical simulations are conducted based on the results of the uniaxial compression tests on limestone. The macroscopic response of the numerical model agrees well with the results of the uniaxial compression tests. To reduce the number of the independent micromechanical parameters, numerical simulations are then carried out. Based on the results of the orthogonal experiments and the multi-factor variance analysis, main micromechanical parameters affecting the macro parameters of rocks are proposed. The macro-micro parameter functions are ultimately established using multiple linear regression, and the iteration correction formulas of the micromechanical parameters are obtained. To further verify the validity of the proposed method, a case study is carried out. The error between the macro mechanical response and the numerical results is less than 5%. Hence the calibration method, i.e., the CM-LPBM, is reliable for obtaining the micromechanical parameters quickly and accurately, providing reference for the calibration of micromechanical parameters.

Modeling of unreinforced brick walls under in-plane shear & compression loading

  • Kalali, Arsalan;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.247-278
    • /
    • 2010
  • The study of the seismic vulnerability of masonry buildings requires structural properties of walls such as stiffness, ultimate load capacity, etc. In this article, a method is suggested for modeling the masonry walls under in-plane loading. At the outset, a set of analytical equations was established for determining the elastic properties of an equivalent homogeneous material of masonry. The results for homogenized unreinforced brick walls through detailed modeling were compared in different manners such as solid and perforated walls, in-plane and out-of-plane loading, etc, and it was found that this method provides suitable accuracy in estimation of the wall linear properties. Furthermore, comparison of the results of proposed modeling with experimental out coming indicated that this model considers the non linear properties of the wall such as failure pattern, performance curve and ultimate strength, and would be appropriate to establish a parametric study on those prone factors. The proposed model is complicated; therefore, efforts need to be made in order to overcome the convergency problems which will be included in this study. The nonlinear model is basically semi-macro but through a series of actions, it can be simplified to a macro model.

Optimum Macro-Siting for Offshore Wind Farm Using RDAPS Sea Wind Model (RDAPS Sea Wind Model을 이용한 해상풍력발전단지 최적 Macro-Siting)

  • Lee, K.H.;Jun, S.O.;Park, K.H.;Lee, D.H.;Park, Jong-Po
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.286-290
    • /
    • 2011
  • This paper introduces the optimum macro-siting of a potential site for an offshore wind farm around Jeju Island using the RDAPS sea wind model. The statistical model was developed by analyzing the sea wind data from RDAPS model, and the meso-scale digital wind map was prepared. To develop the high resolution spatial calibration model, Artificial Neural Network(ANN) models were used to construct the wind and bathymetric maps. Accuracy and consistency of wind/bathymetric spatial calibration models were obtained using analysis of variance. The optimization problem was defined to maximize the energy density satisfying the criteria of maximum water depth and maximum distance from the coastline. The candidate site was selected through Genetic Algorithm(GA). From the results, it is possible to predict roughly a candidate site location for the installation of the offshore wind jam, and to evaluate the wind resources of the proposed site.

  • PDF

Coverage Analysis of WCDMA-based Femto Cells for Data Offloading (데이터 오프로딩을 위한 WCDMA 기반 펨토셀의 커버리지 분석)

  • Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제17권3호
    • /
    • pp.556-560
    • /
    • 2013
  • Recently, solutions to accommodate explosively growing mobile data traffic have attracted intensive attentions since the emergence of high-performance smartphones. Spectrum which can be exploited for mobile communications is very limited. Thus, femto cell is considered as an alternative because it can efficiently offload mobile data traffic from macro cells without using additional spectrum. In this paper, we mathematically analyzed the coverage of femto cell when it is deployed in an area where there exists signals from existing macro base stations. Our numerical results indicate that the coverage of femto cell increases as the total power of femto cell increases or the ratio of power allocated to pilot channel increases. However, it is also shown that the coverage of femto cell is very limited despite its high power when interference signals from macro base stations are strong.

Pullout Performance of Reinforcing Fiber Embedded in Nano Materials Cement Mortar with Nano Clay Contents (나노클레이 첨가량에 따른 나노재료 시멘트 모르타르에 정착된 보강섬유의 인발성능)

  • Oh, Ri-On;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제55권3호
    • /
    • pp.113-121
    • /
    • 2013
  • Recently, it has been studied for the application of nano-materials in the concrete. Applied a small amount of nano-materials can achieve the goal of high strength, high performance and high durability. The small addition of nano clay improves strength, thermal stability, and durability of concrete because of the excellent dispersion. The present study has investigated the effectiveness, when varying with the contents of nano clay, influencing the pull-out behavior of macro synthetic fibers in nano materials cement mortar. Pullout tests conducted in accordance with the Japan Concrete Institute (JCI) SF-8 standard for fiber-reinforced concrete test methods were used to evaluate the pullout performance of the different nano clay. Nano clay was added to the 0, 1, 2, 3, 4 and 5 % of cement weight. The experimental results demonstrated that the addition of nano clay led to improve the pull-out properties as of the load-displacement curve in the precracked and debonded zone. Also, the compressive strength, flexural strength and pullout performance and of Mix No. 1 and No. 2 increased up to the point when nano clay used increased by 2 and 3 % contents, respectively, but decreased when the exceeded 3 and 4 %, respectively. It was proved by verifying increase of the scratching phenomenon in macro synthetic fiber surface through the microstructure analysis on the surface of macro synthetic fiber.

An Analysis of Sustainable Macro Trends of Luxury Fashion Brands (럭셔리 패션 브랜드의 지속가능 매크로 트렌드 분석)

  • Lee, Hojae;Ko, Eunju
    • Journal of Fashion Business
    • /
    • 제26권1호
    • /
    • pp.16-29
    • /
    • 2022
  • Environmental problems increasingly serious, and sustainability in the fashion industry has become an essential factor. Nowadays, numerous brands are engaging in sustainable fashion activities, such as recycling, vegan, fair trade, etc., which have not been done before. However, there are limited studies about sustainable fashion activities focusing on luxury brands. The purpose of this study is to establish the current status of luxury brands' sustainable fashion activities based on the macro trend of Todeschini et al(2017)'s thesis. This study selected six global luxury fashion brands Louis Vuitton, Hermes, Gucci, Prada, Burberry, and Stella McCartney. Data were collected from the brand's websites and reports, fashion magazines, and Google. As a result of the study, the following adjustments are being implemented; first, efforts are being made to reduce the consumption of natural resources. Second, transparency on working conditions is provided in various ways. Third, luxury brands' awareness of the sharing economy was not opened. Fourth, efforts are being made to develop eco-friendly materials and technologies to minimize wastage. Based on these research results, if applied as basic data for the development of Korean fashion brands and start-up companies, it will help establish directions of sustainable fashion strategies.

Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete (주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화)

  • Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • 제18권5호
    • /
    • pp.639-648
    • /
    • 2006
  • A shear experiment of one-way monotonic loading was carried out with the shear span ratio as the main experimental variable for reinforced concrete beam. Using the finite element analysis as the experimental analysis tool and the analysis method to compute the shear resistance of small shear span ratio, a new macro-model composed of crooked main strut and sub strut is proposed in consideration of the effect of bond action between re-bar and concrete based on the experimental result. The experimental finding affirmed the validity of the proposed macro-model when the shear span ratio was at or below 0.75 and confirmed that the experimental result was the most consistent with the computed analysis result when the effective factor of concrete compressive strength was set at 0.75.