• Title/Summary/Keyword: Machinery noise

Search Result 566, Processing Time 0.03 seconds

Mathematical Modeling about Magnetic Attractive Force of Magnetic Bearing (자기베어링 구동용 전자석의 흡인력에 대한 수학적 모델링)

  • Choi, G.H.;Yang, J.H.;Choung, K.G.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.64-68
    • /
    • 2012
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration are very small comparing with mechanical bearings, it is very useful to high revolution machinery. In general, the magnetic attractive force function that is proportional to square of control current(x), and inversely proportional to square of an air gap(i) has been widely used. This paper proposed the new magnetic attractive force function that is proportional to cube of the control current, and inversely proportional to square of the air gap. The function was optimized to minimize the cost function that is the percentage of deviation about the change of a proportional constant(k), using the experimental data, ie, control currents and air gaps.

Design of Broad Band RF Components for Partial Discharge Monitoring System (부분방전 모니터링 시스템을 위한 광대역 RF 소자설계 연구)

  • Lee, Je-Kwang;Ko, Jae-Hyeong;Kim, Koon-Tae;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2286-2292
    • /
    • 2011
  • In this paper we present the design of Low Noise Amplifier(LNA), mixer and filter for RF front-end part of partial discharge monitoring system. The monitoring system of partial discharge in high voltage power machinery is used to prevent many kinds of industrial accidents, and is usually composed of three parts - sensor, RF front-end and digital microcontroller unit. In our study, LNA, mixer and filter are key components of the RF front-end. The LNA consists of common gate and common source-cascaded structure and uses the resistive feedback for broad band matching. A coupled line structure is utilized to implement the filter, of which size is reduced by the meander structure. The mixer is designed using dual gate structure for high isolation between RF and local oscillator signal.

Reliability Evaluation of a Permanent Magnetic Coupling (영구자석 커플링의 신뢰성 향상)

  • Jung, Dong Soo
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.236-242
    • /
    • 2014
  • Since permanent magnet coupling transfers power by magnetic force without contact, it has little shock, vibration, noise. In case of overload, it protects a pump or a motor which is relatively important by slipping internally. In this study, failure analysis and test evaluation on the permanent magnet coupling have been proposed and the process that reliability of the product improves through design improvement has been presented. And failure cause of typical failure case has been investigated and improvement plan has been presented. Finally, reliability improvement is established by analysis of the test results of before and after acceleration test.

System model reduction by weighted component cost analysis

  • Kim, Jae-Hoon;Skelton, Robert-E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.524-529
    • /
    • 1993
  • Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called "component cost" to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. One possible use of component costs is for model reduction by deleting those components that have the smallest component cost. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. When the dynamics of this input are added to the plant, which is to be reduced by CCA, the algorithm for model reduction process will be called Weighted Component Cost Analysis (WCCA). Closed-form analytical expressions of component costs for continuous time case, are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems beyond Lyapunov solvable dimension. A numerical example for NASA's MINIMAST system is presented.presented.

  • PDF

Feedwater Flow Rate Evaluation of Nuclear Power Plants Using Wavelet Analysis and Artificial Neural Networks (웨이블릿 해석과 인공 신경회로망을 이용한 원자력발전소의 급수유량 평가)

  • Yu, Sung-Sik;Seo, Jong-Tae;Park, Jong-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.346-353
    • /
    • 2002
  • The steam generator feedwater flow rate in a nuclear power plant was estimated by means of artificial neural networks with the wavelet analysis for enhanced information extraction. The fouling of venturi meters, used for steam generator feedwater flow rate in pressurized water reactors, may result in unnecessary plant power derating. The backpropagation network was used to generate models of signals for a pressurized water reactor. Multiple-input single-output heteroassociative networks were used for evaluating the feedwater flow rate as a function of a set of related variables. The wavelet was used as a low pass filter eliminating the noise from the raw signals. The results have shown that possible fouling of venturi can be detected by neural networks, and the feedwater flow rate can be predicted as an alternative to existing methods. The research has also indicated that the decomposition of signals by wavelet transform is a powerful approach to signal analysis for denoising.

  • PDF

Flow Analysis around within Sump in a Pump Station using by the CFD (CFD에 의한 펌프장 Sump내 유동해석)

  • Roh, Hyung-Woon;Kim, Jae-Soo;Suh, Sang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.89-94
    • /
    • 2002
  • n general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Uneven flow distribution can also increase or decrease the power consumption with a change in total developed head. To avoid these sump problems pump station designers are considered intake structure dimensions, such as approaching upstream, baffle size, sump width, width of pump cell and so on. From this background, flow characteristics of intake within sump are investigated numerically to obtain the optimal sump design data. The sump model is designed in accordance with HI code.

  • PDF

Integrated Dynamic Simulation of a Magnetic Bearing Stage and Control Design (자기베어링 스테이지의 동적 거동 통합 시뮬레이션을 통한 제어 설계)

  • Kim, Byung-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.730-734
    • /
    • 2013
  • The dynamic simulation of machine tools and motion control systems has been widely used for optimization, design verification, control design, etc. There are three main streams in dynamic simulation: structural dynamic analysis based onthe finite element method, dynamic motion analysis based on equations of motion, and control system analysis based on transfer functions. Generally, one of these dynamic simulation methods is chosen and employed for specific purposes. In this study, an integrated dynamic simulation is introduced, in which the structure, motion, and control dynamics are combined together. Commercially well-known software is used in the integrated dynamic simulation: ANSYS, ADAMS, and Matlab/Simulink. Using the integrated dynamic simulation, the dynamics of a magnetic bearing stage is analyzed and the causes of oscillation and noise are identified. A controller design for suppressing a flexible dynamic mode is carried out and verified through the integrated dynamic simulation.

Analyses of Thrust Bearing in a Scroll Compressor Considering Oldham Ring (올댐링을 고려한 스크롤 압축기 스러스트 베어링의 해석)

  • Park, Sang-Shin;Lee, Seung-Ryoul
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.109-116
    • /
    • 2007
  • A scroll compressor is on the increase in the use for the cooling and ambition machinery because of the advantages about high efficiency, low vibration and low noise. The design of thrust bearing for scroll compressor has depended on the experience. The lubrication considering the squeeze flow was applied for high side shell and low side shell of scroll thrust bearing. This work was based on governing fluid lubrication equation at the general coordinate. It shows the behavior for an orbiting scroll with direct numerical analysis using FDM. This study obtained the theoretical design value by finding load capacity and tilting angle of an orbiting scroll for thrust bearing in a scroll compressor. Especially this work performed the analysis about the design parameter. The program was written using Visual C++ to enhance user to change the design parameter easily. In particular the result value and the pressure profile were displayed as windows in every step for user to understand without difficulty.

Steady and Unsteady Rotating Flows between Concentric Cylinders (동심원 환내의 정상.비정상 회전 유동)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

Directional ARMAX Model-Based Approach for Rotordynamics Identification, Part 1 : Modeling and Analysis (방향 시계열에 의한 회전체 동특성 규명: (I) 모델링 및 해석)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1103-1112
    • /
    • 1998
  • A new time series method, directional ARMAX (dARMAX) model-based approach. is proposed for rotor dynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible, to account for the dynamic characteristics inherent in rotating machinery. This paper is divided into two parts : The dARMAX modeling, analysis. and fitting strategy are presented in the first part. whereas a evaluation of its performance characteristics based on both simulated and experimental data is presented in the second.

  • PDF