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ABSTRACT

Component Cost Analysis considers any given system
driven by a white noise process as an interconnection of
different components, and " assigns a metric called
"component cost” to each component. These component costs
measure the contribution of each component to a
predefined quadratic cost function. One possible use of
component costs is for model reduction by deleting those
components that have the smallest component costs. The
theory of Component Cost Analysis is extended to include
finite-bandwidth colored noises. The results also apply
when actuators have dynamics of their own, When the
dynamics of this input are added to the plant, which is
to be reduced by CCA, the algorithm for model reduction
process will be called Weighted Component Cost Analysis
(WCCA). Closed-form analytical expressions of component
costs for continuous time case, are also derived for a
mechanical system described by its modal data. This is
very useful to compute the modal costs of very high order
systems beyond Lyapunov solvable dimension. A numerical
example for NASA's MINIMAST system is presented,

1. Introduction

There exist numerous schemes for model reduction,
However, due to the requirement of many of these methods
to solve Lyapunov equations these schemes are not
applicable to the model reduction of large flexibie space
structures due to the --large dimension of these models,
Modal Cost Analysis (MCA) is one method which has been
developed especially for such large scale systems, The
MCA is a special case of Component Cost Analysis (CCA)
[1,2], CCA considers any given system driven by a white
noise process as an interconnection of different
components, The definition of these components is up to
analyst | they may have physical significance, or they
may be defined for mathematical convenience. For example,
in a multibody system, each body may be considered as a
component and each component body may have several
subcomponents, For any choice of components CCA assigns a
metric called "component cost”™ to each component. These
component costs measure the contribution of each
component to a predefined quadratic cost function, A
reduced-order model of the given system may be obtained
by deleting those components that have the smallest
component costs, although only special coordinates can
offer any guarantees by this reduction.

In the theory of CCA, the input is assumed to be a
white noise process. However, such infinite-bandwidth

white noise processes do not exist in the real world, In
fact, any real actuator and sensor devices can only have
finite bandwidth, Furthermore, the drawbacks of the
infinite-bandwidth assumption for white noise processes
are evident in infinite dimensional systems, since the
standard quadratic cost function is not finite in all
cases {such as torque inputs and velocity outputs) [6].
To cope with this unrealistic situation we propose the
practical approach of considering the dynamics of
finite-bandwidth inputs. When the dynamics of this input
are added to the plant, which is to be reduced by CCA,
the algorithm for model reduction process will be called
Weighted Component Cost Analysis (WCCA).

The purpose of this paper is to extend the theory of
Component Cost Analysis when a linear system to be
reduced is subjected to a finite-bandwidth colored noise
which is modeled by linear dynamics, When a mechanical
system is described by its wmodal data, each mode is
considered as a component and analytical expressions of
component costs (modal costs) will be derived for
continuous time case. This analytical expression is very
useful to compute the modal costs of very high-order
systems since Lyapunov equations need not be computed,

This paper is organized as follows: section 2
reviews the theory of CCA and section 3 provides
analytical expressions of modal costs when a mechanigal
system is driven by white noises, Section 4 develops the
theory of Weighted Modal Cost Analysis (WMCA) for the
system subjected to finite-bandwidth noises. A numerical
example for NASA's MINIMAST system is presented in
section 5,

2. Theory of Component Cost Analysis

Let a state space realization of a linear
time-invariant system driven by zero mean white noise w
with intensity W, be given as

= Ax + Dw , x eRr"

X w eR™ }
y=Cx , y€Rr™

($A))]

where x and y are, respectively, state and output
vectors, The component form may be written as follows:

)'Cl = %\Auxi + Dw
i

N N
y = iﬁ_IC;x; , iZ\m = n (2.2)

X €ERY , i= 12 «, N
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where N is the number of components and the state vector
X define the i-th component, Given the system (2.1) a
siople quadratic cost function is defined by

V 2 Ea V(D) , V(D) 2 y()TQ yit) (23)

where Eo & I,{.IEE is the expectation operator and Q is a

positive semi-definite output weighting matrix. Then, the
component cost V| associated with each component Xx; is
defined by

vis—é—e(ﬂm—x‘) L i=12 ~,N. (24

axy "

It can be shown [4] that Vi is calculated by the
following formula :

Vi=tr[XC™QCly -, i=1,2 - N (25a)
where tr is the matrix trace operator and the steady
state covariance of the states X satisfies the Lyapunov
‘equation

0= AX + XAT + DWDT . (25b)

= tr [XC"QC], the component costs
Vi satisfy the cost decomposition property :

Clearly, since

?51"‘ . (26)

Because of the properiy (2.6) component costs Vi in
(2.5a) may be normalized as

Vi -, i=12~,N. @n

Then a reduced-order model of the system (2.1) may be
obtained by deleting those components that have the

spmallest V.

3. Analytical Expressions of Modal Costs

Usually the dynamics of large structures are modeled
by their modal data extracted either by finite element
analysis or by experiment, In this case components can be
defined by natural frequencies and mode shapes, and hence
each component has physical significance, If this is the
case, it is possible to get an amalytical expression for
component costs Vi in (2.5), which we shall call modal
costs.

Let a mechanical structure be described as

mor Wy ¢ ofy = diw , i=12 ~,N ,] a1
Y T 4PN &

where @; and {; are, respectively, the natural frequency
and damping ratio of mode i. Note that in (3.1) w(t)
represents a zero mean white noise with intensity ¥, For
the system (3.1), the explicit solution of the Lyapunov
equation (2.4) is known [2,5] to be

diWd; | (20 + 2t0p) (a? - o
[N AL W@ i 1
Xi= Iy ~e? - m,)' 0w (Rw; + "’x)] (3.2)

vhere Xji is the ij—(2X2) block of X in (2.5) with
x = [nym, - ,uwnl®, and

by = w28 + 260)(2we; + 20) + (of - oDHZ (33)

Then the modal cost of the i-th mode can be obtained from
(2.5a) :

Vi = trlf,l Xicfeal, i=12 - N (3.4a)
where
Ci=Ip rl and A = [_Ow% ) - G

Note that for (3.4) the i-th component is defined by
xi = [m ﬁi]T, i.e., each component consists of only
one mode shape. Although it is a formidable task to
calculate by (3.4) all Vi’s for a large scale system, it
is certainly easier than trying to solve the Lyapunov
equation (2.5) numerically,

For a lightly damped structure the wmodal cost V; of
(3.4) can be approximated by setting & =~ 0 for all i :

T4
Vi = dl;EWd' (piQp; + ofriQry)
R )‘f —‘%ﬂ*‘f (olar, - plar) . (35)

@ - @
.«

The approximate formula for MCA suggested by Skelton, et
al [2] can be obtained by taking the first term from
(3.5), or equivalently by assuming, for all i and j » i,

either dfWd; = 0 or piQry =

Vi ~ %‘:—V‘}‘—(p Qo + oirfaQry) . (36)

4. Veighted Modal Cost Analysis

In the previous sections, we assumed that the input
noise w is a white noise process, By considering the
dynamics of finite-bandwidth actuators which drive the
plant to be reduced, we will derive an MCA formula for
more realistic cases, We shall call this Weighted Modal
Cost Analysis {WMCA).

Let the plant be given by

W+ 2w+ ofm = biu + diw,

4D
, N

where w, is an additional plant noise with intensity Wy

y= Zpmit+t Lrom o, i=12
i=1 i=1

and u is the actuator output signal which is now colored
by the actuator dynamics given by

Xe = AgXe + DaWa , X4 ER™ ,}
u = Caxe + Hawa (42)

where W, is a zero mean white noise with intensity Wa. A

state space description of the combined system (4.1) and
(4.2) is obtained as

1=8x+aw,] (4.3a)
y =T2X
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where

o o Xa 1, ©F = [ wy, wa land

PR

=[m o -

=A,,Aﬂ .
8 OA’S

=[Cy, 01, (430)

A, = block diag [~~-[_°m, ) zc.«:.]"'] , (43c)
[b .] [dOT] [bﬁl.] ;43D
Co=1I1~lp, @l~] . (4.3e)

Note that by setting wp, = 0 we have only the colored
noise input u, Now that the system (4.3) is in the
standard form of a linear time-invariant system driven by
white noise, its steady-state covariance matrix satisfies
the following equation :

0=8z2+z8" +508587 (4.4a)
where

o= [W 0] ()
Let

- _[X X

=_[X? xf]‘ (45)

Then (4.4) can be pariitioned into 3 equations ;

= AXa + X,AT + DW.DI (46a)
= AgXz + X2A7 + AXe + DaW.D! (46b)
= ApXp * XpAs + DW,D3 + AXE

+ X,AY + D;W.DJI. (46c)

Since the number of actuators is wusually relatively
small, the solution of (4.6a) can be easily obtained by
any numerical method, However, for completeness, we
assume here that actuator dynamics is described in 2nd
order modal coordinates {instead of in state space form),
and derive an analytical expression for X. as follows :

let actuators be represented by

~l¢ + ztl'”l.“ll + “7-;'1- = du.Wa,

§D ey + jglr liﬂnl + Haw, ' 4.7)
,1 2,

For the state space form (4.2) we have
XI = [ L™ “.Ily g Nan n.ln] and

As = block diag [ 0, ]] (4.8a)

= @g - 2 a@ g ’

D, = 0 = [~

. dL = pa ral-] . (4.8p)

In the same manner as in section 3, we get the Lyapunov
solution for (4.6a)

Xa=
(49a)

d-]';iwld 8 [ (28 000 +28 o0 li) (Uzn; - "’zni)
Ay - (wz,‘ - (.)2.‘) @ 4@ li(zﬁ a0 u;*zc (] ll)

where

Aay = @a® N(Z{ 0w + 2 @ l;)(zf. a0y * 2 @ n.)
+ (a% - 0%’ (495)

Once Xqs for (4.6a) is known, (4.6b} can be analytically
solved due to the special structure of A,, Az and Dz of
(4.4). Let

X1 = [fa, Bil-] . (4.10)
Then the solution of (4.6b) is given by

ai=[A3 - AwA,s + il (Xa cT + DeWHDb; , (411a)
Bi= - Aay , i=12 .., (4.11b)

where I, is an identity matrix of size of A,. Finally for
(4.6c), consider the ij-{2X2) block and let

[Xply = xhl xhz

X2 (4.12a)

After some algebraic manipulation, we have the solution
of (4.6¢c) :

XY= (s 2t o) (Zwb[C o+ R blCaa,
+d.wpd,+b THaW . Hib;-bfCaAstj~biCollaay)

+(0f - obICaay - bJC)] (4.12b)
X#= —1—[(Ztawx+2€ﬁ|)(wzbrc.u|-w-szC.ai)

+(m u,)(d.TwpdprH.w,H.Tb,

~b{CaAudj-bCaAgai)] (4.12c)
X§- Alu Lo} (2610 + 28 1) (dTWod;+ bTH JWoH Iy

'biC.A.(q bj CaAﬁl)

- (0} - o)) (oPbCati -0 C )] (4.12d)
x#=-x¥ (4.120)

where Ay and @y are given by (3.3) and (4.11a),
respectively. Now having the explicit solution given by
(4.9), (4.11) and (4.12) for (4.5), we define the cost
function as given in (2,3) and get the analytical
expression of modal costs for the plant :

Vi = 'J'[Z[Xp]hc QCy)
= Z[XuD-QDi"XﬁZnTQn*XIZ(Dian P . (413)

As-we can see in (4.12), the {Xyly are weighted by
actuator parameters and so Vi in (4.13) are called
Weighted Modal Costs. Notice that by setting by = 0 for
all i and W = Wy, (4.12) leads to (3.2), which is for
the standard white noise input case. As an approximation
we take only the j = i term from (4.13) as we did for
MCA {this is justified when all tx are smali and
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dfwd; = 0, or pfQr;j = 0 ):

Vi *-@%%@(dprdwbm.w.ﬁfbi
- 2TCAJAZ-2t AL+ ufla] (X LCh+ DaWLHM b )
o BIOL e (A2 2t oLl
(X.C-.'!*D.W.Hf)bl . (414)

Notice again that by setting by = 0 for all i and
W = W,, (4.14) leads to the standard formula for
approximate MCA, Vi in (3.6).

5. Application : MINIMAST

The MINIMAST considered here is schematically
represented by Figure 1. From a finite element model we
have the following data :

B+ Zogm + Py = biu + diw,,
y= Som, 112 U9, (5.1)
P

where W, is the noise input with intensity Wy = 19765

Is (Newton)? from the shakers located at 3 corners of
Bay 9 . The natural frequencies and damping ratios of the
MINIMAST structure are shown in Figure 2. The description
of some global modes is given in Table 1. Damping ratios

are obtained by the Rayleigh model: 2{@ = « + puf ,
i=056 -,14 , & = 001194 and {18 = 005

There are three noisy Torque Wheel Actuators (TWA) on the
Tip Plate at Bay 18. Eusch TWA i3 modeled as

Xe = AoXe + Baua + Daw,,
u = CaXa + Hawa (52)

where u, is the command signal to TWA which we shall set
to zero, and we i5 a white noise with intensity

W, = 18382 (Newton-Meter)? . (For complete system
data for MINIMAST, see [6,7].) Selected outputs are the
translational displacements of 3 corners and the
centroidal rotations at Bay 10, 14 and 18. For these
selected outputs, ri = 0 for all i (no velocity or
acceleration outputs), The following modal costs are
given:

19
V= ,5:‘X%."p?Qp,-. i=12 -, 149 (5.3)
p:

where XH is the (1,1) element of (3,2) for MCA and is
given in {(4.12a) for the weighted MCA, Since ry = 0 for

all i, the approximate modal costs (3.5) and (3.6) are
exactly the same. The approximate (unweighted) modal
costs are

T T,
v, ~ (dini)(?iQQi) Ci= 12 - 149, (54)
4803
where we use W = W, or W = W  ( = intensity of u
as a white noise) if either wy or u is considered as a
white noise input. For the approximate weighted modal
costs, (4.14) withry = O for all i will be used.

The normalized modal costs of the 50 highest-ranked
modes are given in Figure 3. Similar plots are shown in
Figure 4 when the actuator dynamics are included (hence

WMCA). Table 2 shows the corresponding rankings of wmodes.
From Figures 3, 4 and Table 2, one should notice that the
cost rankings obtained by the exact expressions (4.4) and
(4.13) are quite different from those by the approximate
expressions (4.5) and (4.14), even with fairly small
damping (1 to 5 %), One of the main reasons for this is
that MINIMAST has a dense frequency spectrum(see Figure 2
and Equations (3.4), (3.5) and (4.13)). Notice also that
the 5 highest-ranked modes give the same normalized modal
costs with exact and approximate expressions, These 5
modes are 4 bending and 1 torsion modes (see Table 1).
Based on these costs and rankings given in Figures 3, 4
and Table 2, six reduced-order wodels are obtained by
retaining the highest-ranked modes in each case. Four
cases are generated by only w,. inputs ! the exact and the
approximate of both the weighted and unweighted MCA. The
remaining two cases are the exact and approximate MCA
with only the w, inputs. Observe, from Tables 1 and 2,
that more giobal modes (e.g., modes 121, 122, 128 and
129) will be retained in a low-order reduced mode! when
wa is used as an input noise than when wj is used,

The output covariance errors are calculated for each
of the six cases to evaluate each reduced-order model.
Figures 5 and 6 show the relative covariance errors of
rotations at Bay 10. First of all, as expected in the
cost analysis, the errors of those reduced-order modeis
by exact analysis (either MCA or WMCA) are quite smaller
than those by approximation, except for low-order models
(less than 8 modes). Figure 5 indicates that when the
MINIMAST is subjected to the shaker noise, wy, we need

more modes to get the "Relative Error” down to a smail
number., On the other hand, when the system is subjected
to the TWA noise( W,), we can get slightly improved
reduced-order models if we use the weighted MCA instead
of the MCA (see the first plots of Figures 5 and 6). in
general, when different input sources are used for MCA,
we shall have different reduced-order models, [f there
are different sets of input sources (e.g. actuator noises
and shaker noises in MINIMAST), we recommend performing
as many cost analyses as input sets and to take union of
sets of the highest-ranked modes in order to get a
reduced-order model which is "good” with respect to an
overall performance,

7 Conclusion

This paper presents several new results, First, the
expressions for modal costs are in explicit closed form.
Secondly, frequency weighting has been added to include
the case when the inputs are colored noises instead of
white noises., These expressions are also in explicit
closed form, The final contribution is to apply the
theory to a large physical system, NASA's MINIMAST, with
real (and therefore finite bandwidth) actuators. Our
analysis was based upon a finite element model supplied
by NASA. It is shown in [6,7] that these models are
useful for control design, The advantage of the exact
closed-form expressions is that previous approximate
closed-form expressions were snall damping
approximations. But the system damping might not be small
and this section shows that large errors in the
reduced-order models may arise from the use of the
standard (small damping) modal cost analysis. Also
previous theory could not treat the weighted case {e.g.
with actuator dynamics), without having to resort to
numerical approaches of component cost analysis,
requiring the solution of Lyapunov equations. For large
scale systems {(such as the MINIMAST example in this
paper) this would have been impossible with present day
computers, Our closed-form results open up the
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application of model reduction practice to large scale
systems beyond "Lyapunov solvable” dimension, In fact
these modal cost formulas can be applied to a structural
system as large as the finite element code can compute
modal data. In the future the inclusion of modal cost
analysis into the finite element codes (e.g. NASTRAN)
seems desirable.
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Table 1. Description of Some Global Modes

Mode Description

1 First Bending

2 First Bending

3 First Torsion

4 Second Bending

5 Second Bending

117 | Tip Plate

118 | Second Torsion

119 | Tip Plate with 3rd Bending
120 | Tip Plate with 3rd Bending
121 | Third Bending

122 | Third Bending

123 | Mid Plate

124 | Tip Plate with 3rd Torsion
127 | Third Torsion

128 | Fourth Bending

129 Fourth Bending

130 Tip Plate with 4th Torsion
131 Fourth Torsion

136 Tip Plate with 4th Bending
140

others
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Table 2. Rankings of Modes

Rank ,V___[EPEE_@i se Wa | Wy
ing MCA WMCA MCA
Exact |Appro. [Exact |Appro. |[Exact |Appro.

W 3 3 3] 3 2 2
2 1 1 1 1 1 1
3 2 2 2 2 5 5
4 4 4 4 4 4 4
5 5 5 5 5 3 3
6 118 | 130 118 | 130 118 | 118
7 120 | 118 | 130 | 118 3 34
8 34 | 131 34 | 131 31 31
9 117 | 117 117 | 117 32 1130
10 {128 128 128 128 30 32
11 131 34 31 34 35 131
12 31 140 131 140 39 30
13 32 119 32 119 130 119
14 | 119 | 120 119 1120 131 39
15 | 144 | 144 144 | 144 47 | 14
16 | 120 {121 120 | 121 56 35
17 30 129 30 | 129 17 | 117
18 | 121 32 121 32 119 116
19 129 A 129 31 33 17
20 35 |14 35 | 141 40 ;115
21 | 140 | 127 140 | 127 117 {121
22 1141 39 14! 39 29 1129
23 39 | 148 39 1148 49 122
24 | 148 [ 137 127 | 137 52 1128
25 | 127 | 136 148 | 136 21 56
26 56 | 122 56 | 122 58 | 127
27 {122 6 122 6 65 47
28 47 30 47 30 43 9
29 | 124 | 124 124 | 124 37 13
30 | 137 | 146 137 | 146 76 1120
31 17 {115 17 | 115 144 15
32 40 35 40 35 73 40
33 33 47 33 47 28 76
3 29 8 29 8 54 16
35 6 | 145 6 | 145 63 33
36 | 136 | 134 136 | 134 70 21
37 52 56 52 56 59 10
38 76 17 76 17 50 | 137
39 58 | 139 58 | 139 68 | 145
40 65 | 116 65 | 116 77 14
4] 49 | 135 49 | 123 27 65
42 1133 | 123 73 | 135 36 73
43 73 38 133 38 116 58
44 21 73 21 73 24 49
45 63 7 63 7 115 77
16 28 76 28 76 15 6
47 | 115 | 133 68 | 133 41 52
48 68 58 70 58 48 | 148
49 70 | 106 15 | 106 38 70
50 43 52 43 52 13 68
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