System Model Reduction by Weighted Component Cost Analysis

Jae Hoon Kim*, Robert E. Skelton**

*Machinery & Electronics Research Institute

Plant 1. Samsung Heavy Industries, ChangWon, KOREA

** School of Aeronautics and Astronautics

Purdue University, West Lafayette, USA

ABSTRACT

Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called "component cost" to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. One possible use of component costs is for model reduction by deleting those components that have the smallest component costs. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. When the dynamics of this input are added to the plant, which is to be reduced by CCA, the algorithm for model reduction process will be called Weighted Component Cost Analysis (WCCA). Closed-form analytical expressions of component costs for continuous time case, are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems beyond Lyapunov solvable dimension. A numerical example for NASA's MINIMAST system is presented.

1. Introduction

There exist numerous schemes for model reduction. However, due to the requirement of many of these methods to solve Lyapunov equations these schemes are not applicable to the model reduction of large flexible space structures due to the large dimension of these models. Modal Cost Analysis (MCA) is one method which has been developed especially for such large scale systems. The MCA is a special case of Component Cost Analysis (CCA) [1,2]. CCA considers any given system driven by a white noise process as an interconnection of different components. The definition of these components is up to analyst: they may have physical significance, or they may be defined for mathematical convenience. For example, in a multibody system, each body may be considered as a component and each component body may have several subcomponents. For any choice of components CCA assigns a metric called "component cost" to each component. These component costs measure the contribution of each component to a predefined quadratic cost function, A reduced-order model of the given system may be obtained by deleting those components that have the smallest component costs, although only special coordinates can offer any guarantees by this reduction.

In the theory of CCA, the input is assumed to be a white noise process. However, such infinite-bandwidth

white noise processes do not exist in the real world. In fact, any real actuator and sensor devices can only have finite bandwidth. Furthermore, the drawbacks of the infinite-bandwidth assumption for white noise processes are evident in infinite dimensional systems, since the standard quadratic cost function is not finite in all cases (such as torque inputs and velocity outputs) [6]. To cope with this unrealistic situation we propose the practical approach of considering the dynamics of finite-bandwidth inputs. When the dynamics of this input are added to the plant, which is to be reduced by CCA, the algorithm for model reduction process will be called Weighted Component Cost Analysis (WCCA).

The purpose of this paper is to extend the theory of Component Cost Analysis when a linear system to be reduced is subjected to a finite-bandwidth colored noise which is modeled by linear dynamics. When a mechanical system is described by its modal data, each mode is considered as a component and analytical expressions of component costs (modal costs) will be derived for continuous time case. This analytical expression is very useful to compute the modal costs of very high-order systems since Lyapunov equations need not be computed.

This paper is organized as follows: section 2 reviews the theory of CCA and section 3 provides analytical expressions of modal costs when a mechanical system is driven by white noises. Section 4 develops the theory of Weighted Modal Cost Analysis (WMCA) for the system subjected to finite-bandwidth noises. A numerical example for NASA's MINIMAST system is presented in section 5

2. Theory of Component Cost Analysis

Let a state space realization of a linear time-invariant system driven by zero mean white noise w with intensity W, be given as

$$x = Ax + Dw$$
, $x \in \mathbb{R}^n$, $w \in \mathbb{R}^{n_*}$, $y \in \mathbb{R}^n$, $y \in \mathbb{R}^n$

where x and y are, respectively, state and output vectors. The component form may be written as follows:

$$\dot{\mathbf{x}}_{1} = \sum_{j=1}^{N} \mathbf{A}_{ij} \mathbf{x}_{j} + \mathbf{D}_{j} \mathbf{w} ,
\mathbf{y} = \sum_{j=1}^{N} \mathbf{C}_{j} \mathbf{x}_{j} , \sum_{j=1}^{N} \mathbf{n}_{1} = \mathbf{n}
\mathbf{x}_{1} \in \mathbb{R}^{n}, \quad \mathbf{i} = 1, 2, \dots, N$$
(2.2)

where N is the number of components and the state vector \mathbf{x}_i define the i-th component. Given the system (2,1) a simple quadratic cost function is defined by

$$V \triangleq E_{\infty} V(t)$$
, $V(t) \triangleq y(t)^{T}Q y(t)$ (2.3)

where $E_{\infty} \triangleq \underset{r \to \infty}{\lim} E$ is the expectation operator and Q is a positive semi-definite output weighting matrix. Then, the component cost V_1 associated with each component x_1 is defined by

$$V_i \triangleq \frac{1}{2} E_{\infty} \left(\frac{\partial V(t)}{\partial x_i} x_i \right)$$
, $i = 1, 2, \dots, N$. (2.4)

It can be shown [4] that V_i is calculated by the following formula:

$$V_i = \text{tr} [XC^TQC]_{ii}, i = 1, 2 \dots, N$$
 (2.5a)

where tr is the matrix trace operator and the steady state covariance of the states X satisfies the Lyapunov equation:

$$0 = AX + XA^{T} + DWD^{T}. (2.5b)$$

Clearly, since $V = tr [XC^TQC]$, the component costs V_i satisfy the cost decomposition property:

$$\dot{V} = \sum_{i=1}^{N} V_i . \tag{2.6}$$

Because of the property (2.6) component costs V_i in (2.5a) may be normalized as

$$\hat{V}_{i} = \frac{V_{i}}{V}$$
 , $i = 1, 2, \dots, N$. (2.7)

Then a reduced-order model of the system (2.1) may be obtained by deleting those components that have the smallest \hat{V}_i .

3. Analytical Expressions of Modal Costs

Usually the dynamics of large structures are modeled by their modal data extracted either by finite element analysis or by experiment. In this case components can be defined by natural frequencies and mode shapes, and hence each component has physical significance. If this is the case, it is possible to get an analytical expression for component costs V_1 in (2.5), which we shall call modal costs.

Let a mechanical structure be described as

$$\begin{array}{l} \tilde{\eta}_{i} + 2\xi_{i}\omega_{i}\tilde{\eta}_{i} + \omega_{i}^{2}\eta_{i} = d_{i}^{T}w , \quad i = 1, 2, \cdots, N, \\ y = \sum\limits_{j=1}^{N}p_{j}\eta_{j} + \sum\limits_{j=1}^{N}r_{j}\tilde{\eta}_{j} \end{array} \right)$$
 (3.1)

where ω_i and ξ_i are, respectively, the natural frequency and damping ratio of mode i. Note that in (3.1) w(t) represents a zero mean white noise with intensity Ψ . For the system (3.1), the explicit solution of the Lyapunov equation (2.4) is known [2,5] to be

$$X_{ij} = \frac{d_i^T W d_j}{\Delta_{ij}} \begin{bmatrix} (2\xi_j \omega_i + 2\xi_j \omega_j) & (\omega_i^2 - \omega_j^2) \\ -(\omega_i^2 - \omega_j^2) & \omega_j \omega_j (2\xi_j \omega_j + 2\xi_j \omega_i) \end{bmatrix} (3.2)$$

where X_{ij} is the ij- (2×2) block of X in (2.5) with $\mathbf{x} = [y_1, y_1, \dots, y_N, y_N]^T$, and

$$\Delta_{ij} = \omega_{i}\omega_{j}(2\xi_{i}\omega_{i} + 2\xi_{j}\omega_{j})(2\xi_{j}\omega_{i} + 2\xi_{j}\omega_{i}) + (\omega_{i}^{2} - \omega_{j}^{2})^{2}. (3.3)$$

Then the modal cost of the i-th mode can be obtained from (2.5a) :

$$V_i = tr[\sum_{j=1}^{N} X_{ij} C_j^T Q C_i], \quad i = 1, 2, \dots, N$$
 (3.4a)

there

$$C_i = [p_i \ r_i]$$
 and $A_i = \begin{bmatrix} 0 & 1 \\ -\omega_i^2 & -2\xi_i\omega_i \end{bmatrix}$. (3.4b)

Note that for (3.4) the i-th component is defined by $\mathbf{x}_i = \left[\eta_i \ \dot{\eta}_i\right]^T$, i.e., each component consists of only one mode shape. Although it is a formidable task to calculate by (3.4) all V_i 's for a large scale system, it is certainly easier than trying to solve the Lyapunov equation (2.5) numerically.

For a lightly damped structure the modal cost V_i of (3.4) can be approximated by setting $\xi_i \approx 0$ for all i:

$$\begin{split} V_{i} \approx & \frac{d_{i}^{T}Wd_{i}}{4\xi_{i}\omega_{i}^{3}}(p_{i}^{T}Qp_{i} + \omega_{i}^{2}r_{i}^{T}Qr_{i}) \\ & + \sum_{i=1}^{N} \frac{d_{i}^{T}Wd_{i}}{\omega_{i}^{2} - \omega_{i}^{2}}(p_{i}^{T}Qr_{i} - p_{i}^{T}Qr_{i}) \;. \end{split} \tag{3.5}$$

The approximate formula for MCA suggested by Skelton, et al [2] can be obtained by taking the first term from (3.5), or equivalently by assuming, for all i and $j \neq i$, either $d_i^T W d_i = 0$ or $p_i^T Q r_i = 0$:

$$V_1 \approx \frac{-d_1^T W d_1}{4 \xi_1 \omega_1^3} (p_1^T Q p_1 + \omega_1^2 r_1^T Q r_1)$$
 (3.6)

4. Weighted Modal Cost Analysis

In the previous sections, we assumed that the input noise w is a white noise process. By considering the dynamics of finite-bandwidth actuators which drive the plant to be reduced, we will derive an MCA formula for more realistic cases. We shall call this Weighted Modal Cost Analysis (WMCA).

Let the plant be given by

where \mathbf{w}_{p} is an additional plant noise with intensity \mathbf{W}_{p} and u is the actuator output signal which is now colored by the actuator dynamics given by

$$\begin{array}{lll}
\dot{\mathbf{x}}_{\mathbf{a}} &= A_{\mathbf{a}} \mathbf{x}_{\mathbf{a}} + D_{\mathbf{a}} \mathbf{w}_{\mathbf{a}} &, & \mathbf{x}_{\mathbf{a}} \in \mathbb{R}^{m} \\
\mathbf{u} &= C_{\mathbf{a}} \mathbf{x}_{\mathbf{a}} + H_{\mathbf{a}} \mathbf{w}_{\mathbf{a}}
\end{array} \right} \tag{4.2}$$

where w_a is a zero mean white noise with intensity W_a . A state space description of the combined system (4.1) and (4.2) is obtained as

$$\begin{cases}
\lambda = 8 \lambda + \delta \omega, \\
y = \Gamma \lambda
\end{cases}$$
(4.3a)

where

$$\theta \ = \ \begin{bmatrix} A_p & A_2 \\ 0 & A_n \end{bmatrix}, \ \delta \ = \ \begin{bmatrix} D_p & D_2 \\ 0 & D_n \end{bmatrix}, \ \Gamma \ = \ [\ C_p \ , \ 0 \] \ , \ \ (4.3b)$$

$$A_p = \text{block diag} \left[\cdots \begin{bmatrix} 0 & 1 \\ -\omega_1^2 & -2\xi_1\omega_1 \end{bmatrix} \cdots \right],$$
 (4.3c)

$$\mathbf{A}_{2} = \begin{bmatrix} \vdots \\ \mathbf{b}_{1}^{T} \mathbf{C}_{\mathbf{a}} \end{bmatrix}, \ \mathbf{D}_{p} = \begin{bmatrix} \vdots \\ \mathbf{0} \\ \mathbf{d}_{1}^{T} \end{bmatrix}, \ \mathbf{D}_{2} = \begin{bmatrix} \vdots \\ \mathbf{0} \\ \mathbf{b}_{1}^{T} \mathbf{H}_{\mathbf{a}} \end{bmatrix}, \quad (4.3d)$$

$$C_{p} = [\cdots[p_{i}, q_{i}]\cdots]. \qquad (4.3e)$$

Note that by setting \mathbf{w}_p = 0 we have only the colored noise input u. Now that the system (4.3) is in the standard form of a linear time-invariant system driven by white noise, its steady-state covariance matrix satisfies the following equation :

$$0 = \theta \Xi + \Xi \theta^{T} + \delta \theta \delta^{T}$$
 (4.4a)

where

$$\theta = \begin{bmatrix} W_{p} & 0 \\ 0 & W_{s} \end{bmatrix}. \tag{4.4b}$$

Let

$$\Xi = \begin{bmatrix} X_p & X_2 \\ X_1^T & X_n \end{bmatrix} . \tag{4.5}$$

Then (4.4) can be partitioned into 3 equations :

$$0 = \mathbf{A}_{\mathbf{a}} \mathbf{X}_{\mathbf{a}} + \mathbf{X}_{\mathbf{a}} \mathbf{A}_{\mathbf{a}}^{\mathrm{T}} + \mathbf{D}_{\mathbf{a}} \mathbf{W}_{\mathbf{a}} \mathbf{D}_{\mathbf{a}}^{\mathrm{T}}$$
 (4.6a)

$$0 = A_0 X_2 + X_2 A_0^T + A_2 X_0 + D_2 W_0 D_0^T$$
 (4.6b)

$$0 = A_{p}X_{p} + X_{p}A_{p}^{T} + D_{p}W_{p}D_{p}^{T} + A_{2}X_{2}^{T} + X_{2}A_{2}^{T} + D_{2}W_{a}D_{2}^{T}.$$

$$(4.6c)$$

Since the number of actuators is usually relatively small, the solution of (4.6a) can be easily obtained by any numerical method. However, for completeness, we assume here that actuator dynamics is described in 2nd order modal coordinates (instead of in state space form), and derive an analytical expression for $X_{\bf a}$ as follows: let actuators be represented by

For the state space form (4.2) we have $\mathbf{x}_a^T = [\eta_{a_{11}} \ \eta_{a_{12}} \ \dots, \eta_{a_{nd}} \ \eta_{a_{nd}}]$ and

$$A_{a} = block diag \left[\cdots \begin{bmatrix} 0 & 1 \\ -\omega_{a_{i}}^{2} & -2\xi_{a_{i}}\omega_{a_{i}} \end{bmatrix} \cdots \right] , \qquad (4.8a)$$

$$D_{\mathbf{a}} = \begin{bmatrix} \vdots \\ 0 \\ \mathbf{d}_{\mathbf{a}_{i}}^{T} \end{bmatrix}, C_{\mathbf{a}} = [\cdots[p_{\mathbf{a}_{i}} \quad r_{\mathbf{a}_{i}}]\cdots] . \tag{4.8b}$$

In the same manner as in section 3, we get the Lyapunov solution for (4.6a) ;

$$X_{a_{ij}} = \frac{d_{a_{i}}^{T}W_{a}d_{a_{i}}}{\Delta_{a_{ij}}} \begin{bmatrix} (2\xi_{a_{i}}\omega_{a_{i}} + 2\xi_{a_{i}}\omega_{a_{i}}) & (\omega_{a_{i}}^{2} - \omega_{a_{i}}^{2}) \\ -(\omega_{a_{i}}^{2} - \omega_{a_{i}}^{2}) & \omega_{a_{i}}\omega_{a_{i}}(2\xi_{a_{i}}\omega_{a_{i}} + 2\xi_{a_{i}}\omega_{a_{i}}) \end{bmatrix}$$

$$(4.9a)$$

where

$$\Lambda_{\mathbf{a}_{ij}} = \omega_{\mathbf{a}_{i}} \omega_{\mathbf{a}_{i}} (2\xi_{\mathbf{a}_{i}} \omega_{\mathbf{a}_{i}} + 2\xi_{\mathbf{a}_{i}} \omega_{\mathbf{a}_{i}}) (2\xi_{\mathbf{a}_{i}} \omega_{\mathbf{a}_{i}} + 2\xi_{\mathbf{a}_{i}} \omega_{\mathbf{a}_{i}}) + (\omega_{\mathbf{a}_{i}}^{2} - \omega_{\mathbf{a}_{i}}^{2})^{2}.$$
 (4.96)

Once X_a for (4.6a) is known, (4.6b) can be analytically solved due to the special structure of A_p , A_2 and D_2 of (4.4). Let

$$X_2^T = [\cdots [\alpha_i, \beta_i] \cdots] . \tag{4.10}$$

Then the solution of (4.6b) is given by

$$\alpha_{i} = [A_{a}^{2} - 2\xi_{i}\omega_{i}A_{a} + \omega_{i}^{2}I_{a}]^{-1}(X_{a}C_{a}^{T} + D_{a}W_{a}H_{a}^{T})b_{i}, (4.11a)$$

$$\beta_{i} = -A_{a}\alpha_{i}, i = 1, 2, ..., N$$
(4.11b)

where I_a is an identity matrix of size of A_a . Finally for (4.6c), consider the ij-(2×2) block and let

$$[X_p]_{ij} = \begin{bmatrix} X_p^{ij} & X_p^{ij} \\ X_{2i}^{2i} & X_p^{2i} \end{bmatrix} . {(4.12a)}$$

After some algebraic manipulation, we have the solution of (4.6 c):

$$\begin{split} X_{ij}^{II} &= -\frac{1}{\Delta_{ij}} [\ (2\xi_{i}\omega_{i} + 2\xi_{j}\omega_{j}) (2\xi_{i}\omega_{i}b_{i}^{T}C_{\alpha}\alpha_{1} + 2\xi_{j}\omega_{j}b_{i}^{T}C_{\alpha}\alpha_{j} \\ &+ d_{i}^{T}W_{p}d_{j} + b_{i}^{T}H_{\alpha}W_{\alpha}H_{\alpha}^{T}b_{j} - b_{i}^{T}C_{\alpha}A_{\alpha}\alpha_{j} - b_{i}^{T}C_{\alpha}A_{\alpha}\alpha_{i}) \\ &+ (\omega_{i}^{2} - \omega_{i}^{2}) (b_{i}^{T}C_{\alpha}\alpha_{j} - b_{i}^{T}C_{\alpha}\alpha_{j}) \end{split} \tag{4.12b}$$

$$\begin{split} X_{ii}^{12} &= \frac{1}{\Delta_{ij}} [\ (2\xi_{i}\omega_{i} + 2\xi_{i}\omega_{j})(\omega_{i}^{2}b_{i}^{T}C_{a}\alpha_{i} - \omega_{j}^{2}b_{i}^{T}C_{a}\alpha_{j}) \\ &+ (\omega_{i}^{2} - \omega_{j}^{2})(d_{i}^{T}W_{p}d_{j} + b_{i}^{T}H_{a}W_{a}H_{a}^{T}b_{j} \\ &- b_{i}^{T}C_{a}A_{a}\alpha_{i} - b_{i}^{T}C_{a}A_{a}\alpha_{i})] \end{split} \tag{4.12c}$$

$$\begin{split} X_{ij}^{22} &= \frac{1}{\Delta_{ij}} \left[\omega_{i}\omega_{j} (2\xi_{i}\omega_{j} + 2\xi_{j}\omega_{l}) (\mathbf{d}_{i}^{T}W_{p}\mathbf{d}_{j} + \mathbf{b}_{i}^{T}\mathbf{H}_{a}W_{a}\mathbf{H}_{a}^{T}\mathbf{b}_{j} \right. \\ &\left. - \mathbf{b}_{i}^{T}\mathbf{C}_{a}\mathbf{A}_{a}\alpha_{i} - \mathbf{b}_{i}^{T}\mathbf{C}_{a}\mathbf{A}_{a}\alpha_{i} \right) \\ &\left. - (\omega_{i}^{2} - \omega_{i}^{2}) (\omega_{i}^{2}\mathbf{b}_{i}^{T}\mathbf{C}_{a}\alpha_{i} - \omega_{i}^{2}\mathbf{b}_{i}^{T}\mathbf{C}_{a}\alpha_{j}) \right] \end{split} \tag{4.12d}$$

$$X_{ij}^{2i} = -X_{ij}^{12} \tag{4.12e}$$

where Δ_{ij} and α_1 are given by (3,3) and (4.11a), respectively. Now having the explicit solution given by (4.9), (4.11) and (4.12) for (4.5), we define the cost function as given in (2.3) and get the analytical expression of modal costs for the plant:

$$V_{i} = tr[\sum_{j=1}^{N} [X_{p}]_{ij} C_{i}^{T} Q C_{i}]$$

$$= \sum_{j=1}^{N} [X_{ij}^{H} p_{i}^{T} Q p_{i} + X_{ij}^{22} r_{i}^{T} Q r_{j} + X_{ij}^{12} (p_{i}^{T} Q r_{i} - p_{j}^{T} Q r_{i})] .$$
 (4.13)

As we can see in (4.12), the $\{X_p\}_{ij}$ are weighted by actuator parameters and so V_1 in (4.13) are called Weighted Modal Costs. Notice that by setting $b_1=0$ for all i and $W=W_p$. (4.12) leads to (3.2), which is for the standard white noise input case. As an approximation we take only the j=i term from (4.13) as we did for MCA (this is justified when all ξ_k are small and

$$d_i^T W d_i = 0$$
, or $p_i^T Q r_i = 0$):

$$\begin{split} V_{i} &\approx \frac{p_{i}^{T}Qp_{i}+\omega_{i}^{2}r_{i}^{T}Qr_{i}}{4\xi_{i}\omega_{i}^{3}}\left(d_{i}^{T}W_{p}d_{i}+b_{i}^{T}H_{a}W_{a}H_{a}^{T}b_{i}\right. \\ &-2b_{i}^{T}C_{a}A_{a}[A_{a}^{2}-2\xi_{i}\omega_{i}A_{a}+\omega_{i}^{2}l_{a}]^{-1}(X_{a}C_{a}^{T}+D_{a}W_{a}H_{a}^{T})b_{i}\right) \\ &+\frac{p_{i}^{T}Qp_{i}}{\omega_{i}^{2}}b_{i}^{T}C_{a}[A_{a}^{2}-2\xi_{i}\omega_{i}A_{a}+\omega_{i}^{2}l_{a}]^{-1} \\ &-(X_{a}C_{a}^{T}+D_{a}W_{a}H_{a}^{T})b_{i}\right]. \end{split} \tag{4.14}$$

Notice again that by setting $b_i=0$ for all i and $W=W_p$, (4.14) leads to the standard formula for approximate MCA, V_i in (3.6).

5. Application: MINIMAST

The MINIMAST considered here is schematically represented by Figure 1. From a finite element model we have the following data:

$$\dot{\eta}_{i} + 2\xi_{i}\omega_{i}\dot{\eta}_{i} + \omega_{i}^{2}\eta_{i} = b_{i}^{T}u + d_{i}^{T}w_{p},
y = \sum_{i=1}^{18} p_{i}\eta_{i}, \quad i = 1, 2, \dots, 149,$$
(5.1)

where w_p is the noise input with intensity $W_p=1976.5$ $I_3~(\text{Newton})^2$ from the shakers located at 3 corners of Bay 9 . The natural frequencies and damping ratios of the MINIMAST structure are shown in Figure 2. The description of some global modes is given in Table 1. Damping ratios are obtained by the Rayleigh model: $2\xi_i\omega_i=\alpha+\beta\omega_i^2$, $i=5,6,\cdots,149$, $\xi_5=0.01194$ and $\xi_{149}=0.05$. There are three noisy Torque Wheel Actuators (TWA) on the Tip Plate at Bay 18. Each TWA is modeled as

$$\dot{x}_a = A_a x_a + B_a u_a + D_a w_a$$
,
 $u = C_a x_a + H_a w_a$ (5.2)

where u_a is the command signal to TWA which we shall set to zero, and w_a is a white noise with intensity W_a = 1.8382 (Newton-Meter)². (For complete system data for MINIMAST, see [6,7].) Selected outputs are the translational displacements of 3 corners and the centroidal rotations at Bay 10, 14 and 18. For these selected outputs, r_1 = 0 for all i (no velocity or acceleration outputs). The following modal costs are given:

$$V_i = \sum_{i=1}^{1/9} X_{ii}^{11} p_i^T Q p_i$$
, $i = 1, 2, \dots, 149$ (5.3)

where X_{ii}^{II} is the (1,1) element of (3,2) for MCA and is given in (4.12a) for the weighted MCA. Since r_i = 0 for all i, the approximate modal costs (3.5) and (3.6) are exactly the same. The approximate (unweighted) modal costs are

$$V_{i} \approx \frac{-(d_{i}^{T}Wd_{i})(p_{i}^{T}Qp_{i})}{4\xi_{i}\omega_{i}^{3}} \text{ , } i = 1, 2, \cdots, 149, \eqno(5.4)$$

where we use $W=W_p$ or $W=W_u$ (= intensity of u as a white noise) if either w_p or u is considered as a white noise input. For the approximate weighted modal costs, (4.14) with $r_1=0$ for all i will be used.

The normalized modal costs of the 50 highest-ranked modes are given in Figure 3. Similar plots are shown in Figure 4 when the actuator dynamics are included (hence

WMCA). Table 2 shows the corresponding rankings of modes. From Figures 3, 4 and Table 2, one should notice that the cost rankings obtained by the exact expressions (4.4) and (4.13) are quite different from those by the approximate expressions (4.5) and (4.14), even with fairly small damping (1 to 5 %). One of the main reasons for this is that MINIMAST has a dense frequency spectrum(see Figure 2 and Equations (3.4), (3.5) and (4.13)). Notice also that the 5 highest-ranked modes give the same normalized modal costs with exact and approximate expressions. These 5 modes are 4 bending and 1 torsion modes (see Table 1). Based on these costs and rankings given in Figures 3, 4 and Table 2, six reduced-order models are obtained by retaining the highest-ranked modes in each case, Four cases are generated by only Wa inputs : the exact and the approximate of both the weighted and unweighted MCA. The remaining two cases are the exact and approximate MCA with only the W_p inputs. Observe, from Tables 1 and 2, that more global modes (e.g., modes 121, 122, 128 and 129) will be retained in a low-order reduced model when W_a is used as an input noise than when W_p is used.

The output covariance errors are calculated for each of the six cases to evaluate each reduced-order model. Figures 5 and 6 show the relative covariance errors of rotations at Bay 10. First of all, as expected in the cost analysis, the errors of those reduced-order models by exact analysis (either MCA or WMCA) are quite smaller than those by approximation, except for low-order models (less than 8 modes). Figure 5 indicates that when the MINIMAST is subjected to the shaker noise, Wp, we need more modes to get the "Relative Error" down to a small number. On the other hand, when the system is subjected to the TWA noise(Wa), we can get slightly improved reduced-order models if we use the weighted MCA instead of the MCA (see the first plots of Figures 5 and 6). In general, when different input sources are used for MCA, we shall have different reduced-order models. If there are different sets of input sources (e.g. actuator noises and shaker noises in MINIMAST), we recommend performing as many cost analyses as input sets and to take union of sets of the highest-ranked modes in order to get a reduced-order model which is "good" with respect to an overall performance,

7 Conclusion

This paper presents several new results. First, the expressions for modal costs are in explicit closed form, Secondly, frequency weighting has been added to include the case when the inputs are colored noises instead of white noises. These expressions are also in explicit closed form. The final contribution is to apply the theory to a large physical system, NASA's MINIMAST, with real (and therefore finite bandwidth) actuators. Our analysis was based upon a finite element model supplied by NASA. It is shown in [6,7] that these models are useful for control design. The advantage of the exact closed-form expressions is that previous approximate closed-form expressions were small approximations. But the system damping might not be small and this section shows that large errors in the reduced-order models may arise from the use of the standard (small damping) modal cost analysis. Also previous theory could not treat the weighted case (e.g. with actuator dynamics), without having to resort to numerical approaches of component cost analysis, requiring the solution of Lyapunov equations. For large scale systems (such as the MINIMAST example in this paper) this would have been impossible with present day computers. Our closed-form results open up the application of model reduction practice to large scale systems beyond "Lyapunov solvable" dimension. In fact these modal cost formulas can be applied to a structural system as large as the finite element code can compute modal data. In the future the inclusion of modal cost analysis into the finite element codes (e.g., NASTRAN) seems desirable.

References

- [1] Skelton, R.E. and Yousuff, A., "Component Cost Analysis of Large Scale System", Int. J. Control, Vol. 37, No. 2, pp. 285-304, 1983.
- [2] Skelton, R.E., Singh, R. and Ramakrishnen, J., "Component Model Reduction by Component Cost Analysis", AIAA Guid, Control Conf., Minn., 1988.
 [3] Hu, A. and Skelton, R.E., "Modal Cost Analysis for S-
- [3] Hu, A. and Skelton, R.E., "Modal Cost Analysis for Simple Continua", Large Space Stucture: Dynamics and Control, Springer-Verlag, ed. by S.N. Atluri and A.K. Ames, Chapter 3, pp. 71-94, 1988.
 [4] Skelton, R.E., "Dynamics System Control: Linear Systems
- [4] Skelton, R.E., "Dynamics System Control:Linear Systems Analysis and Synthesis, John Wiley & Sons, NY, 1988.
- [5] Gawronski, W. and Williams, T., "Model Reduction for Flexible Space Structures", Proc. 30th Structres, Structural Dynamics and Material Conf., Mobile, Alabama , April, 1989.
- [6] Skeiton, R.E., Hsieh, C. and Kim, J.H., "An Integrated Approach for Modelling and Controller Design for NASA 's MINIMAST", Purdue University, West Lafayette, Indiana, 1990.
- [7] Hsieh, C., Kim, J.H., Liu, K., Zhu, G. and Skelton, R E., "Control of Large Flexible Structures - An Experiment on the NASA Mini-Mast Facility", IEEE Control Systems Magazine, Vol. 11, No. 6, pp. 13-21, 1991.

Table 1. Description of Some Global Modes

Mode	Description					
1	First Bending					
2	First Bending					
3	First Torsion					
4	Second Bending					
5	Second Bending					
117	Tip Plate					
118	Second Torsion					
119	Tip Plate with 3rd Bending					
120	Tip Plate with 3rd Bending					
121	Third Bending					
122	Third Bending					
123	Mid Plate					
124	Tip Plate with 3rd Torsion					
127	Third Torsion					
128	Fourth Bending					
129	Fourth Bending					
130	Tip Plate with 4th Torsion					
131	Fourth Torsion					
136	Tip Plate with 4th Bending					
140	Tip Plate with some forsion					
others	Local Modes					

Table 2. Rankings of Modes

Rank ing MCA WMCA MCA Exact Appro. Exact Appro. Exact Appro. 1 3 3 3 2 2 2 1 1 1 1 1 1 3 2 2 2 2 2 4 <th>Γ</th> <th>] [</th> <th>nput No</th> <th>Wp</th> <th></th>	Γ] [nput No	Wp			
Exact Appro. Exact Appro. Exact Appro.				·			
1 3 3 3 2 2 2 1 1 1 1 1 3 2 2 2 5 5 4 4 4 4 4 4 5 5 5 5 3 3 6 118 130 118 130 118 118 7 120 118 130 118 34 34 8 34 131 34 131 31 31 10 128 128 128 128 30 32 11 131 34 31 34 35 131 12 31 140 131 140 39 30 13 32 119 32 119 130 119 14 119 120 131 39 30 129 17 117 18 <td< td=""><td>ing</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	ing						
2 1	<u> </u>		Appro.		Appro.		Appro.
3 2 2 2 2 5 5 4		1					1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 3 3 3 6 118 130 118 130 118 118 118 118 118 118 118 34 34 34 34 34 34 34 34 34 34 34 31 31 31 31 31 31 31 31 31 31 32 130 10 128 128 128 128 30 32 11 131 34 35 131 140 131 140 39 30 129 30 129 30 119 130 119 141 119 120 131 39 30 129 130 119 144 144 144 144 144 144 144 144 144 144 144 144 <td< td=""><td>1 -</td><td>1 -</td><td>, -</td><td>1 -</td><td>, -</td><td></td><td>, -</td></td<>	1 -	1 -	, -	1 -	, -		, -
5 5 5 5 3 3 6 118 130 118 130 118 118 7 120 118 130 118 34 34 8 34 131 34 131 31 31 9 117 117 117 117 32 130 10 128 128 128 128 30 32 11 131 34 31 34 35 131 12 31 140 131 140 39 30 13 32 119 32 119 130 119 14 119 120 131 39 30 13 39 144 14 119 120 131 39 144 144 144 144 144 144 144 144 144 144 144 144 144 144					1	1	
6 118 130 118 130 118 34 34 7 120 118 130 118 34 34 8 34 131 34 131 31 31 9 117 117 117 117 32 130 10 128 128 128 128 30 32 11 131 34 31 34 35 131 12 31 140 131 140 39 30 13 32 119 32 119 130 119 14 119 120 131 39 30 13 39 15 144	1	_	_	1	-		
7 130 118 130 118 34 34 8 34 131 34 131 31 31 9 117 117 117 117 32 130 10 128 128 128 128 30 32 11 131 34 31 34 35 131 12 31 140 131 140 39 30 13 32 119 32 119 130 119 14 119 120 131 39 30 15 144 144 144 144 47 144 16 120 121 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 123 31		l .				1	i .
8 34 131 34 131 31 31 9 117 117 117 117 32 130 10 128 128 128 128 30 32 11 131 34 31 34 35 131 12 31 140 131 140 39 30 13 32 119 130 119 130 119 14 119 120 119 120 131 39 15 144 144 144 144 47 144 16 120 121 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 129 31 33 17 20 35 141 35						l .	1
9 117 117 117 117 32 130 10 128 128 128 128 30 32 11 131 34 31 34 35 131 12 31 140 131 140 39 30 13 32 119 32 119 130 119 14 119 120 131 39 15 144 144 144 144 47 144 16 120 121 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 129 31 33 17 18 121 32 121 32 119 116 19 129 31 133 17 117 121	1 '	í ·	,			ſ	1
10 128 128 128 128 30 32 11 131 34 31 34 35 131 12 31 140 131 140 39 30 13 32 119 32 119 130 119 14 119 120 111 39 119 150 131 39 15 144 144 144 144 47 144 16 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 129 17 117 18 121 32 121 32 119 116 19 129 31 129 17 117 117 18 121 32 121 32 119 116 115 14 40	1	1	1		1	(1
11 131 34 31 34 35 131 12 31 140 131 140 39 30 13 32 119 32 119 130 119 14 119 120 119 120 131 39 15 144 144 144 144 47 144 16 120 121 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 129 31 33 17 20 35 141 35 141 40 115 21 140 127 140 127 117 121 22 141 39 148 49 122 23 39 148 39 148	1 -						
12 31 140 131 140 39 30 13 32 119 32 119 130 119 14 119 120 119 120 131 39 15 144 144 144 144 47 144 16 120 121 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 129 31 33 17 20 35 141 35 141 40 115 21 140 127 140 127 117 121 22 141 39 148 49 122 23 39 148 39 148 49 122 24 148 137 127 137 <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>l .</td> <td></td>		1	1	1		l .	
13 32 119 32 119 130 119 14 119 120 119 120 131 39 15 144 144 144 144 47 144 16 120 121 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 133 17 20 35 141 35 141 40 115 21 140 127 140 127 117 121 22 141 39 148 49 122 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 <				}		1	
14 119 120 119 120 131 39 15 144 144 144 144 47 144 16 120 121 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 129 31 33 17 20 35 141 35 141 40 115 21 140 127 140 127 117 121 22 141 39 141 39 29 129 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56			1	i .		1	1
15 144 144 144 144 47 144 16 120 121 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 129 31 33 17 20 35 141 35 141 40 115 21 140 127 140 127 117 121 22 141 39 141 39 29 129 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122			1	1		,	
16 120 121 120 121 56 35 17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 129 31 33 17 20 35 141 35 141 40 115 21 140 127 117 121 121 120 117 121 22 141 39 141 39 29 129 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 58 127 27 122 6 152 58 127 27 122 6<		1		1 '			
17 30 129 30 129 17 117 18 121 32 121 32 119 116 19 129 31 129 31 33 17 20 35 141 35 141 40 115 21 140 127 140 127 117 121 22 141 39 148 49 122 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 56 52 56 127 27 28 47 30 47 30 43 9 29 124 124 124	1		į.	i .	i	i	•
18 121 32 121 32 119 116 19 129 31 129 31 33 17 20 35 141 35 141 40 115 21 140 127 140 127 117 121 22 141 39 141 39 29 129 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 6 65 47 28 47 30 47 30 43 9 29 124 124 124 124 37 13 30 137 146 137	1			1	1	l .	
19 129 31 129 31 33 17 20 35 141 35 141 40 115 21 140 127 140 127 117 121 22 141 39 141 39 29 129 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 58 127 27 122 6 65 47 28 47 30 47 30 43 9 29 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17	1	1	1	1	ł .	Į.	1
20 35 141 35 141 40 115 21 140 127 140 127 117 121 22 141 39 141 39 29 129 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 56 52 58 127 27 122 6 122 56 52 58 127 27 122 6 65 47 30 43 9 29 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115	1 -	Ł	li .	1	1		1
21 140 127 140 127 117 121 22 141 39 141 39 29 129 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 56 58 127 27 122 6 122 56 58 127 28 47 30 47 30 43 9 29 124 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40	(1			
22 141 39 141 39 29 129 23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 6 65 47 28 47 30 47 30 43 9 29 124 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 33 47 28 76 34 29 8 29 8	1	(f	1	1		1
23 39 148 39 148 49 122 24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 6 65 47 28 47 30 47 30 43 9 29 124 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 33 47 28 76 34 29 8 29 8 54 16 35 6 145 6 145							1
24 148 137 127 137 52 128 25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 6 65 47 28 47 30 47 30 43 9 29 124 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 33 47 28 76 34 29 8 29 8 54 16 35 6 145 6 145 63 33 36 136 134 136 134	1		1				1
25 127 136 148 136 21 56 26 56 122 56 122 58 127 27 122 6 122 6 65 47 28 47 30 47 30 43 9 29 124 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 28 76 34 29 8 29 8 54 16 35 6 145 6 145 63 33 33 347 28 76 34 29 8 29 8 54 16 63 33 33 347 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>l .</td><td>122</td></t<>						l .	122
26 56 122 56 122 58 127 27 122 6 122 6 65 47 28 47 30 47 30 43 9 29 124 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 33 47 28 76 34 29 8 54 16 16 33 33 36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 68 145	24	148	137	127	137	52	128
27 122 6 122 6 65 47 28 47 30 43 9 29 124 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 33 47 28 76 34 29 8 29 8 54 16 35 6 145 6 145 63 33 36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145	25	127	136	148	136	21	56
28 47 30 47 30 43 9 29 124 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 33 47 28 76 34 29 8 29 8 54 16 35 6 145 6 145 63 33 36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116		56	122	56	122	58	127
29 124 124 124 124 37 13 30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 28 76 34 29 8 29 8 54 16 35 6 145 6 145 63 33 36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 <	27	122	6	122	6	65	47
30 137 146 137 146 76 120 31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 33 47 28 76 34 29 8 29 8 54 16 35 6 145 6 145 63 33 36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135	28	47	30	47	30	43	9
31 17 115 17 115 144 15 32 40 35 40 35 73 40 33 33 47 33 47 28 76 34 29 8 29 8 54 16 35 6 145 6 145 63 33 36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 <t< td=""><td>29</td><td>124</td><td>124</td><td>124</td><td>124</td><td>37</td><td>13</td></t<>	29	124	124	124	124	37	13
32 40 35 40 35 73 40 33 33 47 28 76 70 21 77 70 72 77 70 </td <td>30</td> <td>137</td> <td>146</td> <td>137</td> <td>146</td> <td>76</td> <td>120</td>	30	137	146	137	146	76	120
32 40 35 40 35 73 40 33 33 47 28 76 70 21 33 33 33 33 33 33 33 33 33 33 33 33 33 33 36 136 134 136 134 70 21 37 38 70 137 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 73 43	31	17	115	17	115	144	15
33 33 47 33 47 28 76 34 29 8 29 8 54 16 35 6 145 6 145 63 33 36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 71 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 11	32	40	35	40			
34 29 8 29 8 54 16 35 6 145 6 145 63 33 36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 1	33		!		l .]
35 6 145 6 145 63 33 36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 <				i .	ľ		
36 136 134 136 134 70 21 37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 <			-	1	1	1	1
37 52 56 52 56 59 10 38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 <	1	1 -	1	1			1
38 76 17 76 17 50 137 39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70			l l	l.	1		
39 58 139 58 139 68 145 40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70	1		l	1	1		1
40 65 116 65 116 77 14 41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70	1		l .		ı		
41 49 135 49 123 27 65 42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70	1		1		l		1 '
42 133 123 73 135 36 73 43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70	1	í	1	1		1	(
43 73 38 133 38 116 58 44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70	1	1 -	ı)			
44 21 73 21 73 24 49 45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70		1	}	1	1	1	
45 63 7 63 7 115 77 46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70	1	l .		1			
46 28 76 28 76 15 6 47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70	1	I	1	1	1		ŧ
47 115 133 68 133 41 52 48 68 58 70 58 48 148 49 70 106 115 106 38 70	1		1		ł i	1	
48 68 58 70 58 48 148 49 70 106 115 106 38 70	1		1	1	l '	1	l .
49 70 106 115 106 38 70	1 -	1	i	1			!
1				1			1
50 43 52 43 52 13 68	1					ı	1
	50	43	52	43	52	13	68

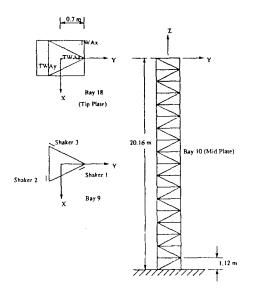


Figure 1. MINIMAST Configuration

Figure 4. Ranked Modal Costs by Weighted MCA (WMCA)

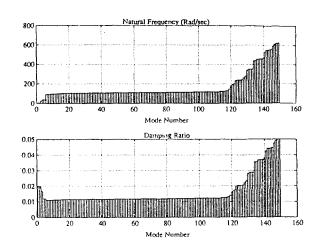
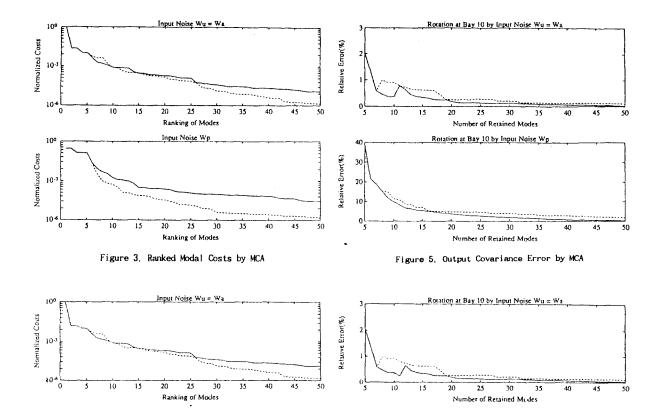



Figure 2, Natural Frequencies and Damping Ratio of MINIMAST

Figure 6. Output Covariance Error by Weighted MCA

solid; Exact dotted; Approximate