• 제목/요약/키워드: Machined surface layer

검색결과 82건 처리시간 0.026초

표면 연마 방법에 따른 니티놀 잔류응력 분석 (Analysis of residual stress of Nitinol by surface Polishing Method)

  • 정지선;홍광표;김운용;조명우
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.51-56
    • /
    • 2017
  • Nitinol, a shape memory alloy (SMA), is manufactured from titanium and nickel and it used in various fields such as electrical applications, micro sensors. It is also recommended as a material in medical for implant because it has excellent organic compatibility. Nitinol is intended to be inserted into the human body, products require a high-quality surface and low residual stress. To overcome this problems, explore electrolyte polishing (EP) is being explored that may be appropriate for use with nitinol. EP is a particularly useful machining method because, as a non contact machining method, it produces neither machining heat nor internal stress in the machined materials. Sandpaper polishing is also useful machining method because, as a contact machining method, it can easily good surface roughness in the machined materials. The electrolyte polishing (EP) process has an effect of improving the surface roughness as well as the film polishing process, but has a characteristic that the residual stress is hardly generated because the work hardened layer is not formed on the processed surface. The sandpaper polishing process has the effect of improving the surface roughness but the residual stress remains in the surface. We experimented with three conditions of polishing process. First condition is the conventional polishing. Second condition is the electrochemical polishing(EP). And Last condition is a mixing process with the conventional polishing and the EP. Surface roughness and residual stress of the nitinol before a polishing process were $0.474{\mu}mRa$, -45.38MPa. Surface roughness and residual stress of the nitinol after mixing process of the conventional polishing and the EP were $1.071{\mu}mRa$, -143.157MPa. Surface roughness and residual stress of the nitinol after conventional polishing were $0.385{\mu}mRa$ and -205.15MPa. Surface roughness and residual stress of sandpaper and EP nitinol were $1.071{\mu}mRa$, -143.157MPa. The result shows that the EP process is a residual stress free process that eliminates the residual stress on the surface while eliminating the deformed layer remaining on the surface through composite surface machining rather than single surface machining. The EP process can be used for biomaterials such as nitinol and be applied to polishing of wafers and various fields.

Modeling of surface roughness in electro-discharge machining using artificial neural networks

  • Cavaleri, Liborio;Chatzarakis, George E.;Trapani, Fabio Di;Douvika, Maria G.;Roinos, Konstantinos;Vaxevanidis, Nikolaos M.;Asteris, Panagiotis G.
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.169-184
    • /
    • 2017
  • Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.

냉각.윤활방식 변화에 따른 가공면의 미시적 정밀도 평가 (Microscopic precision evaluation of machined surface according to the variation of cooling and lubrication method)

  • 황인옥;권동희;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.225-226
    • /
    • 2006
  • As the technique of high-speed end-milling is widely adopted to machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. The environmental pollution has become a big problem in industry and many researcher have investigated in order to preserve the environment. The environmentally conscious machining and technology have more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. The damaged layer affect mold life and machine parts in machining. In this study, the cutting force, the surface roughness, micro hardness and residual stress is evaluated according to machining environment. Finally, it is obtained that the characteristics of damaged layer in environmentally conscious machining is better than that in conventional machining using cutting fluid.

  • PDF

양극 산화와 불소 화합물로 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구 (A Study on Surface Characteristics and Stability of Implants Treated with Anodic Oxidation and Fluoride Incorporation)

  • 임재빈;조인호
    • 구강회복응용과학지
    • /
    • 제22권4호
    • /
    • pp.349-365
    • /
    • 2006
  • State of problem : A number of investigation about increase of surface area via various surface treatments and modification of surface constituent have been carried out. Purpose : The surface characteristics and stability of implants treated with anodic oxidation, fluoride ion incorporation, and groups treated with both methods were evaluated. Material and method : Specimens were divided into six groups, group 1 was the control group with machined surface implants, groups 2 and 3 were anodic oxidized implants (group 2 was treated with 1M $H_2SO_4$ and 185V, group 3 was treated with 0.25M $H_2SO_4$ and $H_3PO_4$ and 300V). Groups 4, 5 and 6 were treated with fluoride. Group 4 was machined implants treated with 0.1% HF, and groups 5 and 6 were groups 2 and 3 treated with 10% NaF respectively. Using variable methods, implant surface characteristics were observed, and the implant stability was evaluated on rabbit tibia at 0, 4, 8 and 12 weeks. Result : 1. In comparison of the surface characteristics of anodic oxidized groups, group 2 displayed delicate and uniform oxidation layer with small pore size containing Ti, C, O and showed mainly rutile, but group 3 displayed large pore size and irregular oxidation layer with many crators. 2. In comparison of the surface characteristics of fluoride treated groups 4, 5, 6 and non-fluoride treated groups 1, 2, 3, the configurations were similar but the fluoride treated groups displayed rougher surfaces and composition analysis revealed fluoride in groups 4, 5, 6. 3. The fluoride incorporated anodic oxidized groups showed the highest resonance frequency values and removal torque values, and the values decreased in the order of anodic oxidized groups, fluoride treated group, control group. 4. According to implant stability tests, group 2 and 3 showed significantly higher values than the control group (P<.05). The fluoride treated groups showed relatively higher values than the non fluoride treated groups and there were significant difference between group 4 and group 1 (P<.05). Conclusion : From the results above, it can be considered that the anodic oxidation method is an effective method to increase initial bone stability and osseointegration and fluoride containing implant surfaces enhance new bone formation. Implants containing both of these methods should increase osseointegration, and reduce the healing period.

보로실리케이트 표면의 나노/마이크로 패터닝을 위한 식각 시간, 하중에 따른 유기 힐록의 성장거동 관찰 (Observation of Growth Behavior of Induced Hillock for Nano/Micro Patterning on Surface of Borosilicate with Etching Time and Load)

  • 조상현;윤성원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.182-185
    • /
    • 2005
  • Indentation pattern and line pattern were machined on borosilicate(Pyrex 7740 glass) surface using the combination of mechanical machining by $Nanoi-indenter\circledR$ XP and HF wet etching, and a etch-mask effect of the affected layer of the nano-scratched and indented Pyrex 7740 glass surface was investigated. In this study, effects of indentation and scratch process with etching time on the morphologies of the indented and scratched surfaces after isotropic etching were investigated from an angle of deformation energies.

  • PDF

실리콘 상부 전극의 기계적 가공 연구 (A Study of Mechanical Machining for Silicon Upper Electrode)

  • 이은영;김문기
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.59-63
    • /
    • 2021
  • Upper electrode is one of core parts using plasma etching process at semiconductor. The purpose of this study is to analyze effects of cutting conditions for mechanical machining of silicon upper electrode. For this research, surface roughness of machined workpiece and depth of damage inside of silicon electrode are experimented and analyzed and different values of feed rate and depth of cut are applied for the experiments. From these experiments, it is verified that the surface roughness and internal damaged layer get worse according to take more fast feed rate. In conclusion, cutting condition is very important factor for machining. Results of this study can use to develop various parts which are made from single crystal silicon and affect various benefits to the semiconductor industry for better productivity.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

디스크 전극을 이용한 미세 전해 밀링 가공에서의 테이퍼 형상 방지 (Taper Reduction in Micro Electrochemical Milling Using Disk-type Electrode)

  • 김보현;이영수;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.167-172
    • /
    • 2005
  • In this paper. micro electrochemical machining (ECM) for micro structure fabrications is presented. By applying ultra short pulses. the chemical reaction can be restricted only to the region very close to the electrode. Micro ECM is applied to machining micro structures through electrochemical milling process becasuse it doesn't suffer from tool wear. Using this method. 3D micro structures were machined on stainless steel. It was found that micro machining is possible with good surface quality in the low concentration electrolyte,0.1 M H₂SO₄. In ECM, as the machining depth increases, better flushing of electrolyte is required for sufficient ion supply. Layer-by-layer milling is advantageous in flushing. However, layer-by-layer milling causes taper of structures. To reduce the taper, application of a disk-type electrode was introduced. By electrochemical milling, various 3D micro structures including a hemisphere with 60 ㎛ diameter were fabricated.

M/C에 사용되는 내면연삭 휠의 ELID 특성 (ELID characteristics of internal grinding wheel by using M/C)

  • 김성헌;방진영;지흥기;최환;이종찬;정선환;제태진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.999-1002
    • /
    • 1997
  • In this study, in order to set ELID conditions in the internal grinding wheel, the characteristics with the variations of grit size, output voltage and peak current were examined by using conventional machining center(M/C) equipped with electrolytic in-process dressing(EL1D). The initial working voltage was lowered and the working current was high with increasing grit size. The insulating layer thickness increased, as the final voltage increased with the output voltage and peak current. The initial wear rate of the wheel machined with ELID were measured indirectly by using surface roughness tracer. The initial wear rate of the wheel with ELID increased along with high grit size. In case that the grit size with ELID was low, the output voltage and peak current had to be increased to increase the insulating layer thickness. In case of the high grit size, the output voltage and the peak current were established low, which made the insulating layer thickness decreased.

  • PDF

나노스크래치와 KOH 에칭 기술을 병용한 Si (100) 패턴제작 (Pattern Fabrication on Si (100) Surface by Using Both Nanoscratch and KOH Etching Technique)

  • 윤성원;이정우;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.448-451
    • /
    • 2003
  • This study describes a new maskless nano-fabrication technique of Si (100) using the combination of nanometer-scale mechanical forming by nano-indenter XP and KOH wet etching. First the surface of a Si (100) specimen was machined by using the nano-machining system, which utilizes the mechanism of the nano-indenter XP. Next, the specimen was etched by KOH solution. After the etching process, the convex structure or deeper hole is made because of masking or promotion effect of the affected layer generated by nano-machining. On the basis of this interesting fact, some sample structures were fabricated.

  • PDF