• Title/Summary/Keyword: Machine Loading

Search Result 424, Processing Time 0.03 seconds

THE ASSESSMENT OF ABUTMENT SCREW STABILITY BETWEEN THE EXTERNAL AND INTERNAL HEXAGONAL JOINT UNDER CYCLIC LOADING

  • Lee, Tae-Sik;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jae-Bong;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.561-568
    • /
    • 2008
  • STATEMENT OF PROBLEM: Currently, many implant systems are developed and divided into two types according to their joint connection: external or internal connection. Regardless of the connection type, screw loosening is the biggest problem in implant-supported restoration. PURPOSE: The purpose of this study is to assess the difference in stability of abutment screws between the external and internal hexagonal connection types under cyclic loading. MATERIAL AND METHODS: Each of the 15 samples of external implants and internal abutments were tightened to 30 N/cm with a digital torque gauge, and cemented with a hemispherical metal cap. Each unit was then mounted in a $30^{\circ}$ inclined jig. Then each group was divided into 2 sub-groups based on different periods of cyclic loading with the loading machine (30 N/ cm - 300 N/cm,14 Hz: first group $1{\times}10^6$, $5{\times}10^6$ cyclic loading; second group $3{\times}10^6$, $3{\times}10^6$ for a total cyclic loading of $6{\times}10^6$) The removal torque value of the screw before and after cyclic loading was checked. SPSS statistical software for Windows was used for statistical analysis. Group means were calculated and compared by ANOVA, independent t-test, and paired t-test with ${\alpha}$=0.05. RESULTS: In the external hexagonal connection, the difference between the removal torque value of the abutment screw before loading, the value after $1{\tims}10^6$ cyclic loading, and the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was not significant. The difference between the removal torque value after $3{\times}10^6$ cyclic loading and after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. In the internal hexagonal connection, the difference between the removal torque value before loading and the value after $1{\times}10^6$ cyclic loading was not significant, but the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was reduced and the difference was significant (P < .05). In addition, in the internal hexagonal connection, the difference between the removal torque value after $3{\times}10^6$ cyclic loading and the value after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. CONCLUSION: The external hexagonal connection was more stable than the internal hexagonal connection after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading (t = 10.834, P < .001). There was no significant difference between the two systems after $3{\times}10^6$, and additional $3{\times}10^6$ cycles.

Analysis for the Cross Rail Design and the Zig-Zag Motional Error in Gantry Type Machine (Gantry Type 대형 공작기계의 Cross Rail 설계 및 좌우 이송 편차에 관한 해석)

  • Lee, Eung-Suk;Lee, Min-Ki;Park, Jong-Bum;Kim, Nam-Sung;Ham, Jun-Sung;Hong, Jong-Seung;Kim, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • Recently, the demands of the large scale machine tools gradually increase to machine the large parts, such as large scale crankshaft, yaw and pitch bearings for the wind power generator and the vehicle or aircraft components. But the high technology is necessary in order to develop the huge machine tools. Furthermore, the global market of it has been monopolized by a few companies. So, we need to develop the large scale machine tools and study its core technology to rush into the increasing market. In this study, we carried out the researches for the important core technology of a multi-tasking, machine tool; a large scale 5-axis machine tool of gantry type for multi-task machining. This study is focused on the design of large size gantry type multi-axis machine. In the case of large size of machine the cross rail deflection in the X-axis is significant. To reduce the deflection due to the eccentric spindle head, a special hollow type design in the cross rail with outside ram is adapted in this study. Also, the Zig-Zag motion in the Y-axis is inevitable with the gantry geometry, which is by the un-balancing, different motion at the left and the right columns moving. We tried to reduce the influence of Zig-Zag motion using FEM with different loading conditions at the left and the right side column.

An Experimental Study on the Dynamic Coefficients according to the Source Positions in Externally Pressurised Air-lubricated Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 급기구 위치에 따른 동적계수에 관한 실험적 연구)

  • 이종렬;이준석;이득우;김태형;박보선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.243-249
    • /
    • 2001
  • This paper has been presented the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existed investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. In this paper, the pressure behavior in theory of air film according to the eccentricity of journal and the source positions analyzed. The theoretical analysis have been identified by experiments. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

  • PDF

A comparative study on the tensile bonding strength of gold alloy solder joints by dental soldering method (치과용 납착 방법에 따른 금합금 납착 연결부의 인장 결합강도 비교 연구)

  • Cho, Mi-Hyang;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • In this study, to provide the fundamental data on stable connection method for successful implants prosthesis, We fabricated the solder joint of gold alloy bar specimens by gas flame soldering method and laser welding and soldering method. It compared and studied the tensile strength of two soldering method by universal testing machine. The results using universal testing machine were as follow : The mean of tensile strength of solder joint bar in gas flame soldering method specimens was 363.89 $\pm$17.62 MPa, and the mean strength of laser welding and soldering method was 125.91 $\pm$ 19.66 MPa, so gas flame soldering method was better than laser welding and soldering method and the finding better way to improve tensile strength is needed in laser welding method. On weak loading condition and the part which is needed an accuracy, laser welding method is more effective and on long-span prosthesis and frequent chewing loading part, laser welding technique is recommended first and applying additional gas flame soldering technique would be better for making much more successful prosthesis.

  • PDF

Optimal Design of Machine Tool Structure for Static Loading Using a Genetic Algorithm (유전자 알고리듬을 이용한 공작기계 구조물의 정역학적 최적설계)

  • Park, Jong-Kweon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.66-73
    • /
    • 1997
  • In many optimal methods for the structural design, the structural analysis is performed with the given design parameters. Then the design sensitivity is calculated based on its structural anaysis results. There-after, the design parameters are changed iteratively. But genetic algorithm is a optimal searching technique which is not depend on design sensitivity. This method uses for many design para- meter groups which are generated by a designer. The generated design parameter groups are become initial population, and then the fitness of the all design parameters are calculated. According to the fitness of each parameter, the design parameters are optimized through the calculation of reproduction process, degradation and interchange, and mutation. Those are the basic operation of the genetic algorithm. The changing process of population is called a generation. The basic calculation process of genetic algorithm is repeatly accepted to every generation. Then the fitness value of the element of a generation becomes maximum. Therefore, the design parameters converge to the optimal. In this study, the optimal design pro- cess of a machine tool structure for static loading is presented to determine the optimal base supporting points and structure thickness using a genetic algorithm.

  • PDF

Induction Motor Vector Control for Drum Washing Machine (드럼 세탁기용 유도전동기의 효율운전에 관한 연구)

  • Jeong, Jeong-Gil;Lee, Won-Chul;Bae, Woo-Ri;Won, Chung-Yuen;Jang, Bong-An;Yang, Ha-Yeong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.473-478
    • /
    • 2005
  • In home appliances, electric energy is optimally controlled by using power electronics technology, creating a comfortable environment in terms of energy saving, low sound generation, and reduced time consumption. Usually simplicity and robustness make the three phase induction motor attractive for use in domestic appliance, including washing machines. Two main fpes of domestic washing machine have evolved. We focus on the front loading machine favored in Europe, which has a horizontal drum axis. With the advent of electronic control, universal motor, with a phase controller operating directly from the ac source, has become popular in washing machine. The efficiency improvement in home appliances is very important for customers. Induction motor efficiency can be improved by means of loss reduction, which can be realized by motor selection and design, improvement of the waveforms supplied by power inverter, utilizing a suitable control method. So this paper describes the architecture and feature of washing machine fed induction motor drive under minimizing losses vector control.

  • PDF

Seven axis modular type pneumatic manipulator development (7축 모듈라형 공기압 매니퓰레이터 개발)

  • 김동수;김용채;김형의
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.968-973
    • /
    • 1991
  • Seven axis modular type pneumatic manipulator is composed of electro-pneumatic automation system which contributes to factory automation by performing loading & unloading process successively which is simple routine work of dealing item of machine tool, catapult, assembly machine, welding machine and so on. In this study, we obtained soft and quick movement in a large space and good reliability motion of various function by combining several actuators which perform rotation movement as well as linear movement at the same time. Gripper which apply to rotary sensor transmitted a structure to demanded position. This development item of 5kgf load prevent stick-slip phenomena of stroke end by designing high cushion internal. We develope flexible manipulator which conforms to demand of user by applying multiple sequence program.

  • PDF

The effect on the position precision by load in M.C. (머시닝 센터에서 하중이 위치결정정밀도에 미치는 영향)

  • 이승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.143-147
    • /
    • 1998
  • As the accuracy of manufactured goods needed high-accuracy processing has made the efficiency of NC and measurment technology develop, the innovation of machine tools has influence the development of the semi-conductor and optical technology. We can mention that a traction role of the acceleration for the development like that depends on the development of the measurement technics - Stylus instrument method, STM, SEM, Laser interferometer method - which are used for measuring the movement accuracy of machine tools. The movement error factors in movement accuracy are expressed as yaw, roll, and pitch etc. Machining center has 21 movement error factors including of 3 axies joint errors because that has 3 axies and has been measured as the standard of the unloaded condition until now inspite of getting static, dynamic, and servo-gain errors in the case of expending the error range. Therefore, this study tries to measure position accuracy according to loading on the X-Y table of the machining center.

  • PDF

CORRECTION TECHNIQUES OF MASS-LOADING EFFECTS OF TRANSDUCERS IN MODAL TESTING

  • Guoyi Ji;Chung, Won-Jee;Lee, Choon-Man;Park, Dong-Keun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.188-188
    • /
    • 2004
  • Modal testing and analysis is a primary tool for obtaining reliable models to represent the dynamics of structures. When a structure is tested in order to collect measured data in modal testing, we usually use attached accelerometers to pick up the response data. Change in modal parameters due to the mass of transducers in modal testing is a well-known problem. The disadvantages are the shift of measured modal frequencies and the change of modal shapes, which can cause inaccurate results in further analysis. Modal analysis methods in frequency domain are based on a set of measured frequency response functions(FRF).(omitted)

  • PDF

The Influence of the floor rigidity on front-loading washer installation and its vibrational behavior (설치면 강성에 따른 드럼세탁기의 동특성 및 설계대책)

  • Wee, Hoon;Cheong, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.248-251
    • /
    • 2004
  • The vibrational behavior of a front load washing machine is heavily influenced by the floor stiffness on which the washing machine is installed. In case the floor stiffness is extremely low like a wooden floor (we call it a 'soft floor, S/F'), it is quite probable that a washer's rigid body mode exists in the operating frequency range. In this case, the outer frame vibration level would be very high, but the mitigation scheme is quite limited except the excitation force abatement by acquisition of the optimal inertia in the internal vibratory system and the diaphragm's stiffness with the minimum force transfer.

  • PDF