• Title/Summary/Keyword: MPPT(Maximum Power Point Tracking

Search Result 382, Processing Time 0.026 seconds

A Study on the Tracking Failure of MPPT Control in PV Generation System (태양광 발전시스템의 MPPT제어의 최대전력추종 실패에 관한 연구)

  • Kim, Bong-Tae;Lee, Jae-Deuk;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1290-1292
    • /
    • 2001
  • Photovoltaic(PV) power generation system has been extensively studied and watched with keen interest as a clean and renewable power source. On the other hand, because the output power of solar cell is not only unstable but uncontrollable, the maximum power point tracking(MPPT) control is still hot issue with the tracking failure left unsolved under the sudden fluctuation of irradiance. Hence, in this paper, we introduce the mechanism of the tracking failure under the fluctuation of irradiance, and show the simulation results using SPRW(simulation method for PV power generation system using real weather conditions).

  • PDF

Micro-scale Solar Energy Harvesting System with a New MPPT control (새로운 MPPT 제어기능을 갖는 마이크로 빛에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yoon, Il-Young;Choi, Sun-Myung;Park, Youn-Soo;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2627-2635
    • /
    • 2013
  • In this paper micro-scale solar energy harvesting system with a new MPPT control are proposed. In conventional solar energy harvesting systems, continuous perturbation techniques of the clock frequency or duty cycle of a power converter have been used to implement MPPT(Maximum Power Point Tracking) control. In this paper, we propose a new MPPT technique to control the duty cycle of a power switch powering a power converter. The proposed circuit is designed in $0.35{\mu}m$ CMOS process, and the designed chip area including pads is $770{\mu}m{\times}800{\mu}m$.

The Maximum Power Point Tracking of Photovoltaic System for Air Conditioning System using Fuzzy Controller. (퍼지제어기를 이용한 에어콘 구동용 태양광 발전시스템의 최대전력점추종 방법)

  • Kang, Byung-Bog;Cha, In-Su;Yu, Kwon-Jong;Jung, Myung-Woong;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.600-602
    • /
    • 1996
  • The purpose of this paper is to develop a new maximum power point tracking(MPPT) using fuzzy set theory for air conditioning system. Fuzzy algorithm based on linguistic rules describing the operator's control strategy is applied to control step-up chopper for MPPT. Fuzzy algorithm is applied to control boost MPPT converter by temperature compensation effect with 8 bit single chip 8051 microcontroller. In this paper, temperature compensation(Becom Transducer : pf-T type) range is $-40^{\circ}C{\sim}+100^{\circ}C$.

  • PDF

The MPPT Control Method for The Seaflow Generation by Using Fuzzy Controller (퍼지 제어기를 사용한 조류발전의 MPPT 제어법)

  • Choi, Jae-Sin;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.154-156
    • /
    • 2007
  • This paper proposes new control method of maximum power point tracking for the seaflow generation system. This control system is performed by using the duty ratio control of DC/DC converter. An advantage of MPPT(Maximum Power Point Tracking)control method presented in this paper is not necessary to use the seaflow turbine characteristic at various seaflow speed and measure the tidal speed and/or the rotation speed of the seaflow generator. Therefore the resulting system ha s the characteristics of lower cost, higher efficiency and lower complexity. The fuzzy controller is used to control the duty ratio of DC/DC converter. So the reactivity and the reliablilty of the generation system is developed. Proposed control method was analyzed mathematically and tested by computer simulation by using Matlab $Simulink^{(R)}$.

  • PDF

A dP/dV Feedback-Controlled MPPT Method for Photovoltaic Power System Using II-SEPIC

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.604-611
    • /
    • 2009
  • A dP/dV feedback-controlled MPPT (Maximum Power Point Tracking) method for photovoltaic power systems using II-SEPIC (Isolated Inverse-SEPIC; Single Ended Primary Inductance Converter) is presented and a current-mode dP/dV feedback-controlled MPPT method is devised to apply for the PV power converter system. A control strategy for the current-mode dP/dV feedback control system is developed in this paper and the proposed MPPT shows relatively satisfactory dynamics against rapidly changing insolation conditions. In order to verify the validity and effectiveness of the proposed method, simulations and experiments of the PV power system using II-SEPlC converter are performed. These simulation and experiment results show that the proposed method enables the PV power system to extract maximum power from the photovoltaic module against the solar insolation variation.

A Study on Wind Speed Estimation and Maximum Power Point Tracking scheme for Wind Turbine System (풍력발전기를 위한 신경망 기반의 풍속 추정 및 MPPT 기법에 관한 연구)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.852-857
    • /
    • 2010
  • As the wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is on how to efficiently operate the wind turbines in a wide range of wind speeds. In general, the wind speed is the main factor that impact on the dynamics of wind turbine system. Wind turbine algorithms are thus required to improve the performance of wind speed measurements. However, the accurate measurement of the effective wind speed using wind gauge and similar sensors is difficult such that control systems are needed for wind speed estimation using various techniques. Therefore, this research suggests the Maximum Power Point Tracking (MPPT) method for tracking the wind speed based on neural networks. Design experiments were carried out in laboratory environment to validate the application of the proposed method.

Model for Maximum Power Point Tracking Using Artificial Neural Network and Fuzzy (인공 신경망과 퍼지를 이용한 최대 전력점 추적을 위한 모델)

  • Kim, Tae-Oh;Ha, Eun-Gyu;Kim, Chang-Bok
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.19-30
    • /
    • 2019
  • Photovoltaic power generation requires MPPT algorithm to track stable and efficient maximum power output power point according to external changes such as solar radiation and temperature. This study implemented a model that could track MPP more quickly than original MPPT algorithm using artificial neural network. The proposed model finds the current and voltage of MPP using the original MPPT algorithm for various combinations of insolation and temperature for training data of artificial neural networks. The acquired MPP data was learned using the input node as insolation and temperature and the output node as the current and voltage. The Experiment results show tracking time of the original algorithms P&O, InC and Fuzzy were respectively 0.428t, 0.49t and 0.4076t for the 0t~0.3t range, and MPP tracking time of the proposed model was 0.32511t and it is 0.1t faster than the original algorithms.

Comparative Study and Simulation of P&O Algorithm using Boost Converter for a Photovoltaic System

  • Ganzorig, Batdelger;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.395-403
    • /
    • 2019
  • The excessive need of power is creating an unbalance situation in power sector, where solar energy is one of the best solutions among other energy sources to mitigate this demand. It is globally accepted because of its flexibility and long life compared to others. A lot research is going on to enhance the energy efficiency by introducing photovoltaic (PV) power generation technology, but still irradiation of PV power is the major problem. In this manuscript, we have designed PV module using single diode methodology and also the solar conversion efficiency was boosted with maximum power point tracking (MPPT) by using perturb and observe (P&O) algorithm. The simulation was done for $1000W/m^2$ and $800W/m^2$ at solar irradiance in cell temperature of 25C and 40C degree levels in PSIM tool.

Submodule Level Distributed Maximum Power Point Tracking PV Optimizer with an Integrated Architecture

  • Wang, Feng;Zhu, Tianhua;Zhuo, Fang;Yi, Hao;Shi, Shuhuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1308-1316
    • /
    • 2017
  • The distributed maximum power point tracking (DMPPT) concept is widely adopted in photovoltaic systems to avoid mismatch loss. However, the high cost and complexity of DMPPT hinder its further promotion in practice. Based on the concept of DMPPT, this paper presents an integrated submodule level half-bridge stack structure along with an optimal current point tracking (OCPT) control algorithm. In this full power processing integrated solution, the number of power switches and passive components is greatly reduced. On the other hand, only one current sensor and its related AD unit are needed to perform the ideal maximum power generation for all of the PV submodules in any irradiance case. The proposal can totally eliminate different small-scaled mismatch effects in real-word condition and the true maximum power point of each PV submodule can be achieved. As a result, the ideal maximum power output of the whole PV system can be achieved. Compared with current solutions, the proposal further develops the integration level of submodule DMPPT solutions with a lower cost and a smaller size. Moreover, the individual MPPT tracking for all of the submodules are guaranteed.

A Novel MPPT Control of Photovoltaic Generation Using NFC Algorithm (NFC 알고리즘을 이용한 태양광 발전의 새로운 MPPT 제어)

  • Jang, Mi-Geum;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1865-1874
    • /
    • 2011
  • This paper proposes a novel maximum power point tracking(MPPT) using a new fuzzy control(NFC) algorithm for robust in insolation variation. Maximum power point(MPP) of solar cell has to achieve for improving output efficiency because it is changed with insolation and temperature. Conventional MPPT controller such as constant voltage(CV), perturbation and observation(PO) and incremental conductance(IC) are researched. But these controller have the problem that is failure to MPP with environment changing. The proposed NFC controller is based the fuzzy control algorithm and able to robust control with environment changing. Also the proposed controller of PV system is modeled by PSIM and the response characteristics according to the parameter variation is compared and analyzed. The validity of this controller is proved through response results.