This paper proposes a new finite control set-model predictive control (FCS-MPC) method for induction motors. In the method, the reference state that satisfies the given torque and rotor flux requirements is derived. Cost indices for the FCS-MPC are defined using the state tracking error, and a linear matrix inequality is formulated to obtain a proper weighting matrix for the state tracking error. The on-line procedure of the proposed FCS-MPC comprises of two steps: select the output voltage vector of the two level inverter minimizing the cost index and compute the optimal modulation factor of the minimizing output voltage vector in order to reduce the state tracking error and torque ripple. The steady state tracking error is removed by using an integrator to adjust the reference state. The simulation and experimental results demonstrated that the proposed FCS-MPC shows good torque, rotor flux control performances at different rotating speeds.
In this paper, we propose cascade-form velocity controller for a permanent magnet synchronous motor (PMSM). The proposed controller consists of a sliding-mode controller (SMC) for the inner current control loop and a model-predictive controller (MPC) for the outer velocity control loop. With SMC, we can ensure that the current tracking error always converges to zero in finite time. The SMC is designed to track the desired currents. Additionally, with MPC, we can obtain the optimal velocity control input which minimizes the cost function. Constraint conditions for input and input variation are included in the MPC design. The simulation results are included to validate the performance of the proposed controller.
Yoon, Tae-Woong;Kim, Jung-Su;Jadbabaie, Ali;Persis, Claudio De
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2003년도 ICCAS
/
pp.1901-1904
/
2003
MPC or model predictive control is representative of control methods which are able to handle physical constraints. Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and if the constraints are imposed only on the input, global aymptotic stability can be obtained; until recently, use of infinite horizons was thought to be inevitable in this case. A globally stabilizing finite-horizon MPC has lately been suggested for neutrally stable continuous-time systems using a non-quadratic terminal cost which consists of cubic as well as quadratic functions of the state. The idea originates from the so-called small gain control, where the global stability is proven using a non-quadratic Lyapunov function. The newly developed finite-horizon MPC employs the same form of Lyapunov function as the terminal cost, thereby leading to global asymptotic stability. A discrete-time version of this finite-horizon MPC is presented here. The proposed MPC algorithm is also coded using an SQP (Sequential Quadratic Programming) algorithm, and simulation results are given to show the effectiveness of the method.
This paper presents an event-triggered model predictive controller for adaptive cruise control system with sampled and quantized-data. Unlike existing works, a longitudinal continuous-time model is used for the predictive control of the system. To efficiently utilize network resources, event-trigger scheme is employed, which allows limited sensor and actuator signal satisfying the condition that the measurement of errors is over the ratio of a trigger level. The proposed control gain is obtained by solving a convex problem satisfying several linear matrix inequalities at every sampling times. Simulation results are given to show the effectiveness of the proposed design method.
This paper proposes a new method of Model Predictive Control (MPC) of nonlinear process by us-ing the measured Volterra kernels as the nonlinear model. A nonlinear dynamical process is usually de-scribed as Volterra kernel representation, In the authors' method, a pseudo-random M-sequence is ar plied to the nonlinear process, and its output is measured. Taking the crosscorrelation between the input and output, we obtain the Volterra kernels up to 3rd order which represent the nonlinear characteristics of the process. By using the measured Volterra kernels, we can construct the nonlinear model for MPC. In applying Model Predictive Control to a nonlinear process, the most important thing is, in general, what kind of nonlinear model should be used. The authors used the measured Volterra kernels of up to 3rd order as the process model. The authors have carried out computer simulations and compared the simulation results for the linear model, the nonlinear model up to 2nd Volterra kernel, and the nonlinear model up to 3rd order Vol-terra kernel. The results of computer simulation show that the use of Valterra kernels of up to 3rd order is most effective for Model Predictive Control of nonlinear dynamical processes.
Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impounded by linear models due to the lack of a similarly accepted nonlinear modelling or data based technique. The authors have recently developed a new method for obtaining Volterra kernels of up to third order by use of pseudorandom M-sequence. By use of this method, nonparametric NMPC is derived in discrete-time using multi-dimensional convolution between plant data and Volterra kernel measurements. This approach is applied to an industrial polymerisation process using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC.
A novel order-reduction technique for model predictive control(MPC) is proposed based on the singular value decomposition(SVD) of a pulse response circulant matrix(PRCM) of a concerned system. It is first investigated that the PRCM (in the limit) contains a complete information of the frequency response of a system and its SVD decomposes the information into the respective principal directions at each frequency. This enables us to isolate the significant modes of the system and to devise the proposed order-reduction technique. Though the primary purpose of the proposed technique is to diminish the required computation in MPC, the clear frequency decomposition of the SVD of the PRCM also enables us to improve the robustness through selective excitation of frequency modes. Performance of the proposed technique is illustrated through two numerical examples.
Currently, the commonly used method for PWM(Pulse Width Modulation) Inverter of the Solar Power Plant. However, the limit of the developing performance to the non-linear and switch devices of the Inverter. Therefore, we propose a model predictive control techniques applied to Laguerre functions. LMPC(Laguerre functions model predictive control) reduces the number of computations made and so online implementation becomes possible where traditional MPC would have fail. In this paper, we comment on the appropriate scope and functions degree of the LMPC inverter control. The simulation results from MATLAB are also provided.
Recent research suggests the various applications of Model Predictive Control on vehicle systems. In numerous cases, nonlinear tire models such as the Magic Formula, which are highly complex and are more detailed than necessary, are used. This paper presents a nonlinear tire model that excludes the region of negative slope but expresses the nonlinear properties of tire well enough for tracking the lane of a racing course. The proposed inverse tire model can also be used to calculate the slip angle from the tire force. Thus, the model can be utilized to design the Model Predictive Controller.
A subspace-based identification method of the Wiener model, consisting of a state-space linear block and a polynomial static nonlinearity at the output, is used to retrieve from discrete sample data the accurate information about the nonlinear dynamics. Wiener model may be incorporated into model predictive control (MPC) schemes in a unique way which effectively removes the nonlinearity from the control problem, preserving many of the favorable properties of linear MPC. The control performance is evaluated with simulation studies where the original first-principles model for a continuous MMA polymerization reactor is used as the true process while the identified Wiener model is used for the control purpose. On the basis of the simulation results, it is demonstrated that, despite the existence of unmeasured disturbance, the controller performed quite satisfactorily for the control of polymer qualities with constraints.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.