• Title/Summary/Keyword: MODI

Search Result 106, Processing Time 0.03 seconds

A Long-term Variability of the Extent of East Asian Desert (동아시아 사막 면적의 경년변화분석)

  • Han, Hyeon-Gyeong;Lee, Eunkyung;Son, Sanghun;Choi, Sungwon;Lee, Kyeong-Sang;Seo, Minji;Jin, Donghyun;Kim, Honghee;Kwon, Chaeyoung;Lee, Darae;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.869-877
    • /
    • 2018
  • The area of desert in East Asia is increasing every year, and it cause a great cost of social damage. Because desert is widely distributed and it is difficult to approach people, remote sensing using satellites is commonly used. But the study of desert area comparison is insufficient which is calculated by satellite sensor. It is important to recognize the characteristics of the desert area data that are calculated for each sensor because the desert area calculated according to the selection of the sensor may be different and may affect the climate prediction and desertification prevention measures. In this study, the desert area of Northeast Asia in 2001-2013 was calculated and compared using Moderate Resolution Imaging Spectroradiometer (MODIS) and Vegetation. As a result of the comparison, the desert area of Vegetation increased by $3,020km^2/year$, while in the case of MODIS, it decreased by $20,911km^2/year$. We performed indirect validation because It is difficult to obtain actual data. We analyzed the correlation with the occurrence frequency of Asian dust affected by desert area change. As a result, MODIS showed a relatively low correlation with R = 0.2071 and Vegetation had a relatively high correlation with R = 0.4837. It is considered that Vegetation performed more accurate desert area calculation in Northeast Asian desert area.

BVOCs Estimates Using MEGAN in South Korea: A Case Study of June in 2012 (MEGAN을 이용한 국내 BVOCs 배출량 산정: 2012년 6월 사례 연구)

  • Kim, Kyeongsu;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.48-61
    • /
    • 2022
  • South Korea is quite vegetation rich country which has 63% forests and 16% cropland area. Massive NOx emissions from megacities, therefore, are easily combined with BVOCs emitted from the forest and cropland area, then produce high ozone concentration. BVOCs emissions have been estimated using well-known emission models, such as BEIS (Biogenic Emission Inventory System) or MEGAN (Model of Emission of Gases and Aerosol from Nature) which were developed using non-Korean emission factors. In this study, we ran MEGAN v2.1 model to estimate BVO Cs emissions in Korea. The MO DIS Land Cover and LAI (Leaf Area Index) products over Korea were used to run the MEGAN model for June 2012. Isoprene and Monoterpenes emissions from the model were inter-compared against the enclosure chamber measurements from Taehwa research forest in Korea, during June 11 and 12, 2012. For estimating emission from the enclosed chamber measurement data. The initial results show that isoprene emissions from the MEGAN model were up to 6.4 times higher than those from the enclosure chamber measurement. Monoterpenes from enclosure chamber measurement were up to 5.6 times higher than MEGAN emission. The differences between two datasets, however, were much smaller during the time of high emissions. More inter-comparison results and the possibilities of improving the MEGAN modeling performance using local measurement data over Korea will be presented and discussed.

Spatial Variability of in situ and GOCI and MODIS Chlorophyll and CDOM in Summer at the East Sea (여름철 동해의 현장측정치와 GOCI와 MODIS 위성 자료로 측정한 엽록소와 유색용존유기물의 공간 변동성)

  • Park, Mi-Ok;Shin, Woo-Chul;Son, Young-Baek;Noh, Tae-Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.327-338
    • /
    • 2015
  • Because of impact on the underwater light field, CDOM can influence the accuracy of global satellite-based measurement of ocean chlorophyll and primary productivity. So we investigated the distribution and seasonal variation of CDOM in the East Sea during summer 2009 and 2011. Among them we report two distinctively different summer cases between 2009 and 2011 year, in which showed the different main sources for CDOM. Regulating factors and sources of CDOM in the East Sea were examined. Comparison between in situ and satellite derived Chl a and CDOM were made to find an influence of CDOM on measurement of satellite derived Chl a. Similar pattern and matching of MODIS Chl a with in situ Chl a 2009 was comparable, but significant discrepancy between MODIS Chl a and in situ Chl a was found, when CDOM was high in summer of 2011. GOCI data showed better matching with in situ data for both Chl a and CDOM, compared to MODIS data in summer of 2011. The presence of high CDOM at the surface layer supplied by vertical mixing seems to affect on the overestimation of Chl a by satellite data.

Verification of CDOM Algorithms Based on Ocean Color Remote Sensing Data in the East Sea (동해에서 해색센서를 이용한 CDOM추정 알고리즘 검증)

  • Kim, Yun-Jung;Kim, Hyun-Cheol;Son, Young-Baek;Park, Mi-Ok;Shin, Woo-Chur;Kang, Sung-Won;Rho, Tae-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.421-434
    • /
    • 2012
  • Colored Dissolved Organic Matter (CDOM) is one of the important components of optical properties of seawater to determine ecosystem dynamics in a given marine area. The optical characteristics of CDOM may depend on the various ecosystem and environmental variables in the sea and those variables may vary region to region. Therefore, the retrieval algorithm for determining light absorption coefficient of CDOM ($a_{CDOM}$) using satellite remote sensing reflectance ($R_{rs}$) developed from other region may not be directly applicable to the other region, and it must be validated using an in-situ ground-truth observation. We have tested 6 known CDOM algorithms (three Semi-analytical and three Empirical CDOM algorithms) developed from other regions of the world ocean with laboratory determined in-situ values for the East Sea using field data collected during seven oceanographic cruises in the period of 2009~2011. Our field measurements extended from the coastal waters to the open oceanic type CASE-1 Waters. Our study showed that Quasi-Analytical Algorithm (QAA_v5) derived $a_{CDOM}$(412) appears to match in-situ $a_{CDOM}$(412) values statistically. Semi-analytical algorithms appeared to underestimate and empirical ones overestimated $a_{CDOM}$ in the East Sea. $a_{CDOM}$(412) value was found to be relatively high in the relatively high satellite derived-chlorophyll-a area. $a_{CDOM}$(412) value appears to be influenced by the amount of chlorophyll-a in seawater. The outcome of this work may be referenced to develop $a_{CDOM}$ algorithm for the new Korean Geostationary Ocean Color Imager (GOCI).

Optimal Algorithm for Transshipment Problem (중개수송 문제 최적 알고리즘)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.153-162
    • /
    • 2013
  • This paper proposes the most simple method for optimal solution of the transshipment problem. Usually the transshipment problem is solved by direct linear programming or TSM (Transportation Simplex Method). The method using TSM has two steps. First it is to get a initial solution using NCM, LCM, or VAM, second to refine the initial solution using MOD or SSM. However the steps is complex and difficult. The proposed method applies the method that transforms transshipment problem to transportation problem. In the proposed method it simply selects the minimum cost of rows about transportation problem, and then it applies the method that assigns a transported volume as an ascending sort of the costs of rows about the selected costs. Our method makes to be very fast got the initial value. Also we uses the method that controls assignment volume, if a heavy item of cost is assigned to a transported volume and it has a condition to be able to transform to more lower cost. The proposed algorithm simply got the optimal solution with applying to 11 transshipment problem.

Retrieval of Fire Radiative Power from Himawari-8 Satellite Data Using the Mid-Infrared Radiance Method (히마와리 위성자료를 이용한 산불방사열에너지 산출)

  • Kim, Dae Sun;Lee, Yang Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.105-113
    • /
    • 2016
  • Fire radiative power(FRP), which means the power radiated from wildfire, is used to estimate fire emissions. Currently, the geostationary satellites of East Asia do not provide official FRP products yet, whereas the American and European geostationary satellites are providing near-real-time FRP products for Europe, Africa and America. This paper describes the first retrieval of Himawari-8 FRP using the mid-infrared radiance method and shows the comparisons with MODIS FRP for Sumatra, Indonesia. Land surface emissivity, an essential parameter for mid-infrared radiance method, was calculated using NDVI(normalized difference vegetation index) and FVC(fraction of vegetation coverage) according to land cover types. Also, the sensor coefficient for Himawari-8(a = 3.11) was derived through optimization experiments. The mean absolute percentage difference was about 20%, which can be interpreted as a favourable performance similar to the validation statistics of the American and European satellites. The retrieval accuracies of Himawari FRP were rarely influenced by land cover types or solar zenith angle, but parts of the pixels showed somewhat low accuracies according to the fire size and viewing zenith angle. This study will contribute to estimation of wildfire emissions and can be a reference for the FRP retrieval of current and forthcoming geostationary satellites in East Asia.

Analysis on Cloud-Originated Errors of MODIS Leaf Area Index and Primary Production Images: Effect of Monsoon Climate in Korea (MODIS 엽면적지수 및 일차생산성 영상의 구름 영향 오차 분석: 우리나라 몬순기후의 영향)

  • Kang, Sin-Kyu
    • The Korean Journal of Ecology
    • /
    • v.28 no.4
    • /
    • pp.215-222
    • /
    • 2005
  • MODIS (Moderate Resolution Image Spectrometer) is a core satellite sensor boarded on Terra and Aqua satellite of NASA Earth Observing System since 1999 and 2001, respectively. MODIS LAI, FPAR, and GPP provide useful means to monitor plant phonology and material cycles in terrestrial ecosystems. In this study, LAI, FPAR, and GPP in Korea were evaluated and errors associated with cloud contamination on MODIS pixels were eliminated for years $2001\sim2003$. Three-year means of cloud-corrected annual GPP were 1836, 1369, and 1460g C $m^{-2}y^{-1}$ for evergreen needleleaf forest, deciduous broadleaf forest, and mixed forest, respectively. The cloud-originated errors were 8.5%, 13.1%, and 8.4% for FPAR, LAI, and GPP, respectively. Summertime errors from June to September explained by 78% of the annual accumulative errors in GPP. This study indicates that cloud-originated errors should be mitigated for practical use of MODIS vegetation products to monitor seasonal and annual changes in plant phonology and vegetation production in Korea.

Estimating Photosynthetically Available Radiation from Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해양관측위성 (GOCI) 자료를 이용한 광합성 유효광량 추정)

  • Kim, Jihye;Yang, Hyun;Choi, Jong-Kuk;Moon, Jeong-Eon;Frouin, Robert
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • Here, we estimated daily Photosynthetically Available Radiation (PAR) from Geostationary Ocean Colour Imager (GOCI) and compared it with daily PAR derived from polar-orbiting MODIS images. GOCI-based PAR was also validated with in-situ measurements from ocean research station, Socheongcho. GOCI PAR showed similar patterns with in-situ measurements for both the clear-sky and cloudy day, whereas MODIS PAR showed irregular patterns at cloudy conditions in some areas where PAR could not be derived due to the clouds of sunglint. GOCI PAR had shown a constant difference with the in-situ measurements, which was corrected using the in-situ measurements obtained on the days of clear-sky conditions at Socheongcho station. After the corrections, GOCI PAR showed a good agreement excepting on the days with so thick cloud that the sensor was optically saturated. This study revealed that GOCI can estimate effectively the daily PAR with its advantages of acquiring data more frequently, eight times a day at an hourly interval in daytime, than other polar orbit ocean colour satellites, which can reduce the uncertainties induced by the existence and movement of the cloud and insufficient images to map the daily PAR at the seas around Korean peninsula.

Comparison of the Estimated Result of Ecosystem Service Value Using Pixel-based and Object-based Analysis (화소 및 객체기반 분석기법을 활용한 생태계서비스 가치 추정 결과 비교)

  • Moon, Jiyoon;Kim, Youn-soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1187-1196
    • /
    • 2017
  • Despite the continuing effort to estimate the value of function and services of ecosystem, most of the researches has used low and medium resolution satellite imagery such as MODIS or Landsat. It means that the researches to measure the ecosystem service value using VHR (Very High Resolution) satellite imagery have not been performed much, while the source of available VHR imagery is increasing. Thus, the aim of this study is to estimate and compare the result of ecosystem service value over Sejong city, S. Korea, which is one of the rapidly changed city, through the pixel-based and object-based classification analysis using VHR KOMPSAT-3 images, for more specific and precise information. In the result of the classification, forest and grassland were underestimated while agriculture and urban were overestimated in the pixel-based result compared to the object-based result. Furthermore, bare soil area was presented contrasting result that was increased in the pixel-based result, however, decreased in the object-based result. Using those results, ecosystem service values were estimated. The annual ecosystem service values in 2014 were $8.18 million USD(pixel-based) and $8.63 million USD(object-based), however, decreased to $7.80 million USD(pixel-based) and $8.62 million USD(object-based) in 2016. It is expected to use those results as a preliminary data when to make sustainable development plan and policy to improve the quality of life in the local level.

Particulate Organic Carbon (POC) Algorithms for the southwestern part of the East Sea during spring-summer period using MODIS Aqua (MODIS를 이용한 춘.하계 동해 서남부 해역의 해수 중 입자성 유기탄소 함량 추정 알고리즘 개선)

  • Hong, Gi-Hoon;Ahn, Yu-Hwan;Son, Young-Baek;Ryu, Joo-Hyung;Kim, Chang-Joon;Yang, Dong-Beom;Kim, Young-Il;Chung, Chang-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.107-120
    • /
    • 2011
  • Several MODIS AQUA products have been compared with shipboard data to assess the possibility of using remote sensing to estimate particulate organic carbon (POC) concentration in the surface waters of the East Sea. A total of 30 POC profiles obtained in spring and summer seasons of the years of 2006~2010 were compared with remote sensing reflectance at various wavelengths and diffuse attenuation coefficient at 490 nm observed by MODIS AQUA. The algorithm thus established was $POC=266.85^*[R_{rs}(488)/R_{rs}(555)]^{-1.447}$ ($R^2=0.924$) with root mean square error of 20.9 mg $m^{-3}$. Remotely sensed POC contents derived using our algorithm appeared also not to be affected by the presence of non-POC component in suspended particulate matter. Therefore this algorithm could be applied to obtain POC concentration over the East Sea using MODIS Aqua observation.