DOI QR코드

DOI QR Code

Particulate Organic Carbon (POC) Algorithms for the southwestern part of the East Sea during spring-summer period using MODIS Aqua

MODIS를 이용한 춘.하계 동해 서남부 해역의 해수 중 입자성 유기탄소 함량 추정 알고리즘 개선

  • Received : 2011.03.28
  • Accepted : 2011.04.24
  • Published : 2011.04.30

Abstract

Several MODIS AQUA products have been compared with shipboard data to assess the possibility of using remote sensing to estimate particulate organic carbon (POC) concentration in the surface waters of the East Sea. A total of 30 POC profiles obtained in spring and summer seasons of the years of 2006~2010 were compared with remote sensing reflectance at various wavelengths and diffuse attenuation coefficient at 490 nm observed by MODIS AQUA. The algorithm thus established was $POC=266.85^*[R_{rs}(488)/R_{rs}(555)]^{-1.447}$ ($R^2=0.924$) with root mean square error of 20.9 mg $m^{-3}$. Remotely sensed POC contents derived using our algorithm appeared also not to be affected by the presence of non-POC component in suspended particulate matter. Therefore this algorithm could be applied to obtain POC concentration over the East Sea using MODIS Aqua observation.

동해에서 입자성 유기탄소(Particulate Organic Carbon, POC) 함량을 위성 관측으로 추정하기 위해 MODIS AQUA 위성 자료와 2006~2010 년 춘계와 하계에, 동해 서남부 해역의 30 개 정점에서 화학 분석을 통하여 측정한 POC 함량 자료를 원격 반사도, 확산광소산계수 등 MODIS Aqua 해색 위성 관측 자료와 비교하여 현장 값에 가장 근접하고 통계적으로 유의한 해수 중 POC 함량을 추정하는 알고리즘을 개발하였다. 위성 자료가 현장 값에 가장 근접하는 경우는 $R_{rs}$(488)와 $R_{rs}$(555) 비율을 이용하는 경우로서 거듭 제곱형태로 $POC=266.85^*[R_{rs}(488)/R_{rs}(555)]^{-1.447}$ ($R^2=0.924$)이고, 평균 제곱근 오차는 20.9 mg $m^{-3}$로 양호하였다. 부유 입자 중 POC 이외 물질의 함량은 상기 알고리즘에 영향을 미치지 않는 것으로 나타났다. 그러므로 동해 서남부 해역의 춘계와 하계에 대해서는 이 해역의 광학특성을 반영한 알고리즘을 사용하여 MODIS Aqua 해색 위성 관측 자료로부터 표층 해수의 POC 함량을 추정할 수 있을 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 한국해양연구원

References

  1. Ahn, Y.H., J.E. Moon, W.C. Seo, and H.J. Yoon, 2009. Inherent optical properties of red tide for ocean color remote sensing application. Journal of Korean Society for Marine Environmental Engineering, 12: 474-454(in Korean).
  2. Ahn Y.H., P. Shanmugam, J.H. Ryu, J.C. Jeong, 2006. Satellite detection of harmful algal bloom occurrences in Korean waters, Harmful Algae 5: 213-231. https://doi.org/10.1016/j.hal.2005.07.007
  3. Balch, W.M., D.T. Drapeau, J.J. Fritz, B.C. Bowler, and J. Nolan, 2005. Optical backscattering in the Arabian Sea _ continuous underway measurements of particulate inorganic and organic carbon, Deep-Sea Research I, 48: 2423- 2452.
  4. Bans, K., 1977. Determining the carbon-to chlorophyll ratio of natural phytoplankton, Marine Biology, 41: 199-212. https://doi.org/10.1007/BF00394907
  5. Behrenfeld, M.J., E. Boss, D. Siegel, and D.M. Shea, 2005. Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochemical Cycles, 19: GB1006. doi:10.1029/ 2004GBoo2299
  6. Eppley, R.W., F.P. Chavez, and R.T. Barber, 1992. Standing stocks of particulate carbon and nitrogen in the equatorial Pacific at $150^{\circ}W$, Journal of Geophysical Research, 97: 655-661. https://doi.org/10.1029/91JC01386
  7. Falkowski, P., Z. Dubinsky, and K. Wyman, 1985. Growth-irradiance relationships in phytoplankton, Limnology and Oceanography, 30: 311-321. https://doi.org/10.4319/lo.1985.30.2.0311
  8. Gardner, W.D., A.V. Mishonov, and M.J. Richardson, 2006. Global POC concentrations from in-situ and satellite data, Deep Sea Research II, 53: 718-740. https://doi.org/10.1016/j.dsr2.2006.01.029
  9. Garver, S.A., and D.A. Siegel, 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea, Journal of Geophysical Research, 102(C8): 18607-18625 https://doi.org/10.1029/96JC03243
  10. Geider, R., 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton, New Phytol., 106: 1-34. https://doi.org/10.1111/j.1469-8137.1987.tb04788.x
  11. Gundersen, K., K.M. Orcutt, D.A. Purdie, A.F. Michaels, and A.H. Knap, 2001. Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study(BATS) site, Deep Sea Research II, 48: 1697-1718 https://doi.org/10.1016/S0967-0645(00)00156-9
  12. Hedges J.I., and J.H. Stern, 1984. Carbon and nitrogen determinations of carbonate-containing solids, Limnology and Oceanography, 29(3): 657-663. https://doi.org/10.4319/lo.1984.29.3.0657
  13. Honjo, S., S.J. Manganini, R.A. Krishfield, and R. Francois, 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1963, Progress in Oceanography, 76: 217-285. https://doi.org/10.1016/j.pocean.2007.11.003
  14. Hong, G.H., and C.T.A. Chen, 2002. Aragonitic pteropod flux to the interior of the East Sea(Sea of Japan), TAO, 13: 205-210.
  15. Hong, G.H., S.M. Choe, M.S. Suk, J.Y. Na, I.C. Sin, S.C. Chang, and S.H. Kim, 1997. Annual biogenic particle fluxes to the interior of the East/Japan Sea, a large marginal sea of the Northwest Pacific. In: Tsunogai, S.(Ed.), Biogeochemical Processes in the North Pacific. Japan Marine Science Foundation, Tokyo, pp. 300-321.
  16. Kim D.S., J.H. Shim, and S.J. Yoo, 2006. Seasonal variations in nutrients and chlorophyll a concentrations in the northern East China Sea, Ocean Science Journal, 42(3): 125-137.
  17. Kim, S.W., S. Saitoh, J. Ishizaka, Y. Isoda, and M. Kishino, 2000. Temporal and spatial variability of phytoplankton pigment concentration in the Japan Sea derived from CZCS images, Journal of Oceanography, 56: 527-538. https://doi.org/10.1023/A:1011148910779
  18. Koike, I., S. Hara, K. Terauchi, and K. Kogure, 1990. Role of submicrometre particles in the ocean, Nature, 345: 242- 244. https://doi.org/10.1038/345242a0
  19. Lee D.K., and P. Niller P., 2010a. Surface circulation in the southwestern Japan/East Sea as observed from drifters an sea surface height, Deep Sea Research I, 157: 1222-1232.
  20. Lee D.K., and P. Niller P., 2010b. Eddies in the southwestern East/Japan Sea. Deep Sea Research I, 157: 1233-1242.
  21. Loisel, H., E. Boss, D. Stramski, K. Oubelkheir, and P.Y. Deschamps, 2001. Seasonal variability of the backscattering coefficient in the Mediterranean Sea based on Satellite SeaWiFS imagery, Geophysical Research Letter, 28: 4203- 4206. https://doi.org/10.1029/2001GL013863
  22. Longhurst, A. R., I. Koike, W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, and M. Wells, 1992. Submicron particles in northwest Atlantic shelf water, Deep Sea Reseach Part A, 39: 1-7 https://doi.org/10.1016/0198-0149(92)90016-M
  23. McClain, C.R., G.C. Feldman, and S.B. Hooker, 2004. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series, Deep-Sea Research II, 51: 5-42. https://doi.org/10.1016/j.dsr2.2003.11.001
  24. Mitchell D.A., W.J. Teague, M. Wimbush, D.R. Watts, and G.G. Sutyrin, 2005. The Dok Cold Eddy, Journal of Physical Oceanography, 35: 273- 288. https://doi.org/10.1175/JPO-2684.1
  25. Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content(case I waters), Journal of Gepphysical Research, 93: 10,749-10,768.
  26. Morel A., and B. Gentili, 2009. A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data, Remote Sensing of Environment, 113: 998-1011. https://doi.org/10.1016/j.rse.2009.01.008
  27. Morel, A., and L. Prieur, 1977. Analysis of variations in ocean color, Limnology and Oceanography, 22(4): 709-722. https://doi.org/10.4319/lo.1977.22.4.0709
  28. Morel, A., and Y.H. Ahn, 1991. Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells, Journal of Marine Research, 49: 177-202. https://doi.org/10.1357/002224091784968639
  29. Mishonov, A.V.,W.D. Gardner, and M.J. Richardson, 2003. Remote sensing and surface POC concentration in the South Atlantic, Deep Sea Research II, 50: 2997-3015. https://doi.org/10.1016/j.dsr2.2003.07.007
  30. Pabi, S and K.R. Arrigo, 2006. Satellite estimation of marine particulate organic carbon in waters dominated by different phytoplankton taxa. Journal of Geophysical Research Ocean, 111: C09003, doi:10.1029/2005JC003137
  31. Park, K.A., D.S. Ullman, K. Kim, J.Y. Chung, and K.P. Kim, 2007. Spatial and temporal variability of satellite-observed subpolar front in the East/Japan Sea, Deep Sea Research I, 54: 453- 470. https://doi.org/10.1016/j.dsr.2006.12.010
  32. Parsons T.R., Y. Maita, C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press. Oxford. 173p.
  33. Roesler, C.S., and M.J. Perry, 1995. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance, Journal of Geophysical Research, 100: 13279-13294. https://doi.org/10.1029/95JC00455
  34. Sabine, C. L., R.F. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.H. Peng, A. Kozyr, T. Ono, and A.F. Rios, 2004. The oceanic sink for anthropogenic $CO_2$, Science, 305: 367-371. https://doi.org/10.1126/science.1097403
  35. Son, Y.B., W.D. Gardner, A.V. Mishonov, and M.J. Richardson, 2009a. Multispectral remotesensing algorithms for particulate organic carbon(POC): The Gulf of Mexico, Remote Sensing of Environment, 113: 50-61 https://doi.org/10.1016/j.rse.2008.08.011
  36. Son, Y.B., W.D. Gardner, A.V. Mishonov, and M.J. Richardson, 2009b. Model-based remote sensing algorithms for particulate organic carbon(POC) in the Northeastern Gulf of Mexico, Journal of Earth System Science, 118(1): 1-10. https://doi.org/10.1007/s12040-009-0001-1
  37. Stramska, M., and D. Stramski, 2005. Variability of particulate organic carbon concentration in the north polar Atlantic based on ocean color observation with Sea-viewing Wide Field-ofview Sensor(SeaWiFS), Journal of Geophysical Research, 110: C10018. Doi: 10.1029/2004JC002762.
  38. Stramski, D., and D. A. Kiefer, 1991. Light scattering by microorganisms in the open ocean, Progressive in Oceanography, 28: 343-383. https://doi.org/10.1016/0079-6611(91)90032-H
  39. Stramski, D., R.A. Reynolds, M. Kahru, and B.G. Mitchell, 1999. Estimation of particulate organic carbon in the ocean from satellite remote sensing, Science, 285: 239-242. https://doi.org/10.1126/science.285.5425.239
  40. Stramski, D., R.A. Reynolds, M. Babin, S. Kaczmarek, M.R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M.S. Twardowski, B.A. Franz, and H. Claustre, 2008. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans, Biogeosciences, 5: 171-201. https://doi.org/10.5194/bg-5-171-2008
  41. Wang, X.J., M. Behrenfeld, R. Le Borgne, R. Murtugudde, and E. Boss, 2008. Regulation of phytoplankton carbon to chlorophyll ratio by light, nutrients and temperature in the equatorial Pacific Ocean: a basin-scale model, Biogeosciences Discussions, 5: 3869-3903. https://doi.org/10.5194/bgd-5-3869-2008
  42. Wong ,C.S., Waser N.A.D., Whitney F.A., Johnsonn W.K., and Page J.S., 2002. Time-series study of the biogeochemistry of the North East subarctic Pacific: reconciliation of the Corg/N mineralization and uptake ratios with the Redfield ratios. Deep Sea Research II, 49: 5717- 6738. https://doi.org/10.1016/S0967-0645(02)00211-4
  43. Yamada, K., J. Ishizaka, and H. Nagata, 2005. Spatial and temporal variability of satellite estimated primary production in the Japan Sea from 1998 to 2002, Journal of Oceanography, 61: 857- 869. https://doi.org/10.1007/s10872-006-0005-2

Cited by

  1. Spatio-Temporal Distribution of Particulate Organic Carbon (POC) and Nitrogen (PON) in the Southwestern Area of East Sea vol.19, pp.2, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.2.144
  2. 동해에서 해색센서를 이용한 CDOM추정 알고리즘 검증 vol.28, pp.4, 2011, https://doi.org/10.7780/kjrs.2012.28.4.6