DOI QR코드

DOI QR Code

Estimating Photosynthetically Available Radiation from Geostationary Ocean Color Imager (GOCI) Data

정지궤도 해양관측위성 (GOCI) 자료를 이용한 광합성 유효광량 추정

  • Kim, Jihye (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology) ;
  • Yang, Hyun (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology) ;
  • Choi, Jong-Kuk (Integrated Ocean Sciences, University of Science & Technology) ;
  • Moon, Jeong-Eon (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology) ;
  • Frouin, Robert (Scripps Institution of Oceanography)
  • 김지혜 (한국해양과학기술원 해양위성센터) ;
  • 양현 (한국해양과학기술원 해양위성센터) ;
  • 최종국 (과학기술연합대학원대학교 해양융합학과) ;
  • 문정언 (한국해양과학기술원 해양위성센터) ;
  • Received : 2016.05.25
  • Accepted : 2016.06.22
  • Published : 2016.06.30

Abstract

Here, we estimated daily Photosynthetically Available Radiation (PAR) from Geostationary Ocean Colour Imager (GOCI) and compared it with daily PAR derived from polar-orbiting MODIS images. GOCI-based PAR was also validated with in-situ measurements from ocean research station, Socheongcho. GOCI PAR showed similar patterns with in-situ measurements for both the clear-sky and cloudy day, whereas MODIS PAR showed irregular patterns at cloudy conditions in some areas where PAR could not be derived due to the clouds of sunglint. GOCI PAR had shown a constant difference with the in-situ measurements, which was corrected using the in-situ measurements obtained on the days of clear-sky conditions at Socheongcho station. After the corrections, GOCI PAR showed a good agreement excepting on the days with so thick cloud that the sensor was optically saturated. This study revealed that GOCI can estimate effectively the daily PAR with its advantages of acquiring data more frequently, eight times a day at an hourly interval in daytime, than other polar orbit ocean colour satellites, which can reduce the uncertainties induced by the existence and movement of the cloud and insufficient images to map the daily PAR at the seas around Korean peninsula.

이 연구에서는 세계최초 해색 위성인 GOCI로부터 일간 광합성 유효광량(Daily PAR)(GOCI PAR)를 추정하였고 이를 극궤도 위성인 MODIS에서 추정한 Daily PAR(MODIS PAR)와 비교하였다. 또 소청초기지 현장자료를 이용하여 GOCI PAR의 정확도를 검증하였다. GOCI PAR는 맑은 날과 구름이 있는 날 모두 현장자료와 비슷한 결과를 보이지만 MODIS PAR는 구름이 있는 날 값이 일정하지 않고, 자료 손실 등으로 인해 값이 추정되지 않는 해역도 존재하였다. 그러나 GOCI PAR와 현장자료 PAR 사이에 일정한 값의 차이가 나타나 소청초 기지의 맑은 날에 해당하는 PAR 값을 이용하여 GOCI PAR를 보정하였다. 보정 결과, 두꺼운 구름의 영향으로 광학적으로 포화된 날을 제외한 나머지 달에서 GOCI PAR 값이 현장자료 PAR 값과 거의 일치하는 것을 보였다. 연구결과, GOCI 자료는 낮 시간 동안 하루 8번의, 극궤도 위성에 비해 많은 자료를 이용하므로, 한반도 주변 해역에서 Daily PAR 생성 시 구름에 의한 이동과 자료의 부족에 의한 오차를 줄일 수 있을 것으로 판단된다.

Keywords

References

  1. Baker K. and R. Frouin, 1987. Relation between photosynthetically available radiation and total insolation at the ocean surface under clear skies. Limnology and Oceanography, 32(6): 1370-1377. https://doi.org/10.4319/lo.1987.32.6.1370
  2. Blackburn W.J. and J.T.A. Proctor, 1983. Estimating photosynthetically active radiation from measured solar irradiance, Solar Energy, 31(2): 233-234. https://doi.org/10.1016/0038-092X(83)90087-7
  3. Bossel H., 1996. TREEDYN 3 forest simulation model, Ecological Modelling, 90: 187-227. https://doi.org/10.1016/0304-3800(95)00139-5
  4. Bouvet M., 2006. MERIS Photosynthetically Available Radiation: a product quality assessment, Proc. of the Second Working Meeting on MERIS and AATSR Calibration and Geophysical Validation (MAVT-2006), ESRIN, Frascati, Italy, Mar. 20-24, Available at http://envisat.esa.int/workshops/mavt_2006/papers/56_bouve.pdf.
  5. Carder K.L., F. Robert, F.R. Chen, and S.K. Hawes, 2003. Instantaneous Photosynthetically Available Radiation and Absorbed Radiation by Phytoplankton, Algorithm Theoretical Basis Document (ATBD), 20(7): 1-24.
  6. Dedieu G., P.Y. Deschamps, and Y.H. Kerr, 1987. Satellite estimation of solar irradiance at the surface of the earth and of surface albedo using a physical model applied to Meteosat data, Jounal of Climate and Applied Meteorology, 26(1): 79-87. https://doi.org/10.1175/1520-0450(1987)026<0079:SEOSIA>2.0.CO;2
  7. Frouin R. and B. Chertock, 1992. A technique for global monitoring of net solar irradiance at the ocean surface. Part I: Model, Journal of Applied meteorology, 31(9): 1056-1066. https://doi.org/10.1175/1520-0450(1992)031<1056:ATFGMO>2.0.CO;2
  8. Frouin R. and R.T. Pinker, 1995. Estimating photosynthetically active radiation (PAR) at the Earth's surface from satellite observations, Remote Sensing of Environment, 51(1): 98-107. https://doi.org/10.1016/0034-4257(94)00068-X
  9. Frouin R., B.A. Franz, and P.J. Werdell, 2003. Chapter product, Algorithm Updates for the Fourth SeaWiFS Data Reprocessing, NASA/TM-2003-206892.
  10. Frouin R. and H. Murakami, 2007. Estimating photosynthetically availableradiation at the ocean surface from ADEOS-II Global Imagerdata, Journal of oceanography, 63(3): 493-503. https://doi.org/10.1007/s10872-007-0044-3
  11. Frouin R. and J. McPherson, 2012. Estimating photosynthetically available radiation at the ocean surface from GOCI data, Ocean Science Journal, 47(3): 313-321. https://doi.org/10.1007/s12601-012-0030-6
  12. Gregg W.W. and K.L. Carder, 1990. A simple spectral solar irradiance model for cloudless maritime atmosphere, Limnology and oceanography, 35(8): 1657-1675. https://doi.org/10.4319/lo.1990.35.8.1657
  13. Jin Z., T.P. Charlock, W.L. Smith, and K. Rutledge, 2004. A parameterization of ocean surface albedo, Geophysical Research Letters, 31(22): L22301. https://doi.org/10.1029/2004GL021180
  14. Kirk J.T., 1996. Light and Photosynthesis in Aquatic Ecosystems, 3rd edition, Cambridge University Press.
  15. Lavender S., 2010. Photosynthetically Active Radiation, OLCI Level 2Algorithm Theoretical Basis Document, SENTINEL-3 optical products and algorithm definition, 1.2: 1-15.
  16. Leigh Jr. E.G., 1999. Tropical forest ecology: A view from Barro Colorado Island, Oxford University Press, USA, p. 245.
  17. Liang S., T. Zheng, R. Liu, H. Fang, S. Tsay, and S. Running, 2006. Estimation of incident photosynthetically active radiation from moderate resolution imaging spectrometer data, Journal of Geophysical Research: Atmospheres, 111: 1-15.
  18. Pinker R.T. and I. Laszlo, 1992. Global distribution of photosynthetically active radiation as observed from satellites, Journal of Climate, 5(1): 56-65. https://doi.org/10.1175/1520-0442(1992)005<0056:GDOPAR>2.0.CO;2
  19. Rao C.N., 1984. Photosynthetically active components of global solar radiation: measurements and model computations, Archives for meteorology, geophysics, and bioclimatology, Series B, 34(4): 353-364. https://doi.org/10.1007/BF02269448
  20. Tanre D., M. Herman, P.Y. Deschamps, and A. De Leffe, 1979. Atmospheric modeling for space measurements of ground reflectances, including bi-directional properties, Applied optics, 18(21): 3587-3594 https://doi.org/10.1364/AO.18.003587
  21. Tripathy M., M. Raman, and P. Chauhan, 2014. Modulation in ocean primary production due to variability of photosynthetically available radiation under different atmospheric conditions, International Jounal of Oceanogrphy, 2014: 1-12. https://doi.org/10.1155/2014/279412
  22. Van Laake P.E. and G.A. Sanchez-Azofeifa, 2004. Simplified atmospheric radiativetransfer modelling for estimating incident PAR using MODIS atmospheric products, Remote Sensing of Environment, 91(1): 98-113. https://doi.org/10.1016/j.rse.2004.03.002

Cited by

  1. A Yellow Sea Monitoring Platform and Its Scientific Applications vol.6, pp.None, 2016, https://doi.org/10.3389/fmars.2019.00601
  2. 동해 연안역 일차생산량 추정을 위한 GOCI 자료 적용 vol.36, pp.2, 2016, https://doi.org/10.7780/kjrs.2020.36.2.2.2