• Title/Summary/Keyword: MIMO application

Search Result 67, Processing Time 0.028 seconds

An Efficient Scheme to Achieve Differential Unitary Space-Time Modulation on MIMO-OFDM Systems

  • Liu, Shou-Yin;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.565-574
    • /
    • 2004
  • Differential unitary space-time modulation (DUSTM) has emerged as a promising technique to obtain spatial diversity without intractable channel estimation. This paper presents a study of the application of DUSTM on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems with frequency-selective fading channels. From the view of a correlation analysis between subcarriers of OFDM, we obtain the maximum achievable diversity of DUSTM on MIMO-OFDM systems. Moreover, an efficient implementation strategy based on subcarrier reconstruction is proposed, which transmits all the signals of one signal matrix in one OFDM transmission and performs differential processing between two adjacent OFDM blocks. The proposed method is capable of obtaining both spatial and multipath diversity while reducing the effect of time variation of channels to a minimum. The performance improvement is confirmed by simulation results.

  • PDF

A Formula Derivation of Channel Capacity Calculation in a MIMO System

  • Kabir, S.M.Humayun;Lee, Eun-Ju;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.182-184
    • /
    • 2009
  • In this letter, we derive a tight closed-form formula for an ergodic capacity of a multiple-input multiple-output (MIMO) for the application of wireless communications. The derived expression is a simple closed-form formula to determine the ergodic capacity of MIMO systems. Assuming the channels are independent and identically distributed (i.i.d.) Rayleigh flat-fading between antenna pairs, the ergodic capacity can be expressed in a closed form as the finite sum of exponential integrals.

Closed-form Capacity Analysis for MIMO Rayleigh Channels

  • Humayun Kabir, S. M.;Pham, Van-Su;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.49-52
    • /
    • 2008
  • In this letter, we derive a tight closed form formula for an ergodic rapacity of a multiple-input multiple-output (MIMO) for the application of wireless communications. The derived expression is a simple close-form formula to determine the ergodic capacity of MIMO systems. Assuming the channels are independent and identically distributed (i.i.d.) Rayleigh flat-fading between antenna pairs, the ergodic capacity can be expressed in a closed form as the finite sum of exponential integrals.

  • PDF

Angle-Range-Polarization Estimation for Polarization Sensitive Bistatic FDA-MIMO Radar via PARAFAC Algorithm

  • Wang, Qingzhu;Yu, Dan;Zhu, Yihai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2879-2890
    • /
    • 2020
  • In this paper, we study the estimation of angle, range and polarization parameters of a bistatic polarization sensitive frequency diverse array multiple-input multiple-output (PSFDA-MIMO) radar system. The application of polarization sensitive array in receiver is explored. A signal model of bistatic PSFDA-MIMO radar system is established. In order to utilize the multi-dimensional structure of array signals, the matched filtering radar data can be represented by a third-order tensor model. A joint estimation of the direction-of-departure (DOD), direction-of-arrival (DOA), range and polarization parameters based on parallel factor (PARAFAC) algorithm is proposed. The proposed algorithm does not need to search spectral peaks and singular value decomposition, and can obtain automatic pairing estimation. The method was compared with the existing methods, and the results show that the performance of the method is better. Therefore, the accuracy of the parameter estimation is further improved.

Application of Golden Ratio Jacket Code in MIMO Wireless Communications (MIMO 통신에서 황금(黃金) 비(比) 자켓코드의 응용)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.83-93
    • /
    • 2017
  • In everyday life, the ratio of credit card aspect ratio is 1: 1.56, and A4 printer paper is 1: 1.414, which is relatively balanced golden ratio. In this paper, we show the Fibonacci Golden ratio as a polynomial based on the golden ratio, which is the most balanced and ideal visible ratio, and show that the application of Euler and symmetric jacket polynomial is related to BPSK and QPSK constellation. As a proof method, we have derived Fibonacci Golden and Galois field element polynomials. Then mathematically, We have newly derived a golden jacket code that can be used to generate an appropriate code with orthogonal properties and can simply be used for inverse calculation. We also obtained a channel capacity according to the channel correlation change using a block jacket matrix in a MIMO mobile communication.

Application to the design of reduced-order robust MPC and MIMO identification

  • Lee, Kwang-Soon;Kim, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.313-316
    • /
    • 1997
  • Two different issues, design of reduced-order robust model predictive control and input signal design for identification of a MIMO system, are addressed and design techniques based on singular value decomposition(SVD) of the pulse response circulant matrix(PRCM) are proposed. For this, we investigate the properties of the PRCM, which is a periodic approximation of a linear discrete-time system, and show its SVD represents the directional as well as the frequency decomposition of the system. Usefulness of the PRCM and effectiveness of the proposed design techniques are demonstrated through numerical examples.

  • PDF

On the Design of a WiFi Direct 802.11ac WLAN under a TGn MIMO Multipath Fading Channel

  • Khan, Gul Zameen;Gonzalez, Ruben;Park, Eun-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1373-1392
    • /
    • 2017
  • WiFi Direct (WD) is a state of the art technology for a Device-to-Device (D2D) communication in 802.11 networks. The performance of the WD system can be significantly affected by some key factors such as the type of application, specifications of MAC and PHY layer parameters, and surrounding environment etc. It is, therefore, important to develop a system model that takes these factors into account. In this paper, we focus on investigating the design parameters of the PHY layer that could maximize the efficiency of the WD 802.11 system. For this purpose, a basic theoretical model is formulated for a WD network under a 2x2 Multiple In Multiple Out (MIMO) TGn channel B model. The design level parameters such as input symbol rate and antenna spacing, as well as the effects of the environment, are thoroughly examined in terms of path gain, spectral density, outage probability and Packet Error Rate (PER). Thereafter, a novel adaptive algorithm is proposed to choose optimal parameters in accordance with the Quality of Experience (QoE) for a targeted application. The simulation results show that the proposed method outperforms the standard method thereby achieving an optimal performance in an adaptive manner.

Localization of Subsurface Targets Based on Symmetric Sub-array MIMO Radar

  • Liu, Qinghua;He, Yuanxin;Jiang, Chang
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.774-783
    • /
    • 2020
  • For the issue of subsurface target localization by reverse projection, a new approach of target localization with different distances based on symmetric sub-array multiple-input multiple-output (MIMO) radar is proposed in this paper. By utilizing the particularity of structure of the two symmetric sub-arrays, the received signals are jointly reconstructed to eliminate the distance information from the steering vectors. The distance-independent direction of arrival (DOA) estimates are acquired, and the localizations of subsurface targets with different distances are realized by reverse projection. According to the localization mechanism and application characteristics of the proposed algorithm, the grid zooming method based on spatial segmentation is used to optimize the locaiton efficiency. Simulation results demonstrate the effectiveness of the proposed localization method and optimization scheme.

Hexa-Band Hybrid MIMO Antenna for the Mobile Phone Surrounding Ground (접지에 둘러싸인 휴대폰을 위한 6중 밴드 하이브리드 MIMO 안테나)

  • Lee, Kyeong-Ho;Son, Taeho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.357-364
    • /
    • 2015
  • In this paper, we designed and implemented a PIFA(Planar Inverted F Antenna) + IFA(Inverted F Antenna) hybrid MIMO(Multi Input Multi Output) antenna for the hexa mobile communication service band. By the simultaneous operation both PIFA and IFA using the coupled feeding structure, we tried for application to modern mobile phones that have large ground size. A PIFA is applied to the ground area, and an IFA is applied to no ground small space on top of the phone. A diagonal fed MIMO antenna is implemented PCB embedded type without antenna carrier component. Implemented antenna on the bare board measured within 3 : 1 for VSWR under hexa mobile communication band as CDMA, GSM900, DCS, KPCS, USPCS, and WCDMA. Measured average gains and efficiencies were -5.19~-3.16 dBi and 30.27~48.26 % for the CDMA, GSM900 band, and -9.50~-5.19 dBi and 11.23~30.28 % for the DCS, KPCS, USPCS, WCDMA band. It's shown that studied antenna can be applied to the antenna for the modern mobile phone.

Deep CNN based Pilot Allocation Scheme in Massive MIMO systems

  • Kim, Kwihoon;Lee, Joohyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4214-4230
    • /
    • 2020
  • This paper introduces a pilot allocation scheme for massive MIMO systems based on deep convolutional neural network (CNN) learning. This work is an extension of a prior work on the basic deep learning framework of the pilot assignment problem, the application of which to a high-user density nature is difficult owing to the factorial increase in both input features and output layers. To solve this problem, by adopting the advantages of CNN in learning image data, we design input features that represent users' locations in all the cells as image data with a two-dimensional fixed-size matrix. Furthermore, using a sorting mechanism for applying proper rule, we construct output layers with a linear space complexity according to the number of users. We also develop a theoretical framework for the network capacity model of the massive MIMO systems and apply it to the training process. Finally, we implement the proposed deep CNN-based pilot assignment scheme using a commercial vanilla CNN, which takes into account shift invariant characteristics. Through extensive simulation, we demonstrate that the proposed work realizes about a 98% theoretical upper-bound performance and an elapsed time of 0.842 ms with low complexity in the case of a high-user-density condition.