
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, Oct. 2020                                        4214 
Copyright ⓒ 2020 KSII 

 
http://doi.org/10.3837/tiis.2020.10.016                                                                                                                ISSN : 1976-7277 

Deep CNN based Pilot Allocation Scheme in 
Massive MIMO systems 

 
Kwihoon Kim1, Joohyung Lee2 

1 Department of Artificial Intelligence Convergence Education, Korea National University of Education 
Cheongju 28173, South Korea 
[e-mail: kimkh@knue.ac.kr] 

2 Department of Software, Gachon University 
Seongnam 13120, South Korea 
[e-mail: j17.lee@gachon.ac.kr] 

*Corresponding author: Joohyung Lee 
 

Received October 25, 2019; revised March 15, 2020; accepted June 28, 2020;  
published October 31, 2020 

 

 

Abstract 
 
This paper introduces a pilot allocation scheme for massive MIMO systems based on deep 
convolutional neural network (CNN) learning. This work is an extension of a prior work on the 
basic deep learning framework of the pilot assignment problem, the application of which to a 
high-user density nature is difficult owing to the factorial increase in both input features and 
output layers. To solve this problem, by adopting the advantages of CNN in learning image 
data, we design input features that represent users’ locations in all the cells as image data with 
a two-dimensional fixed-size matrix. Furthermore, using a sorting mechanism for applying 
proper rule, we construct output layers with a linear space complexity according to the number 
of users. We also develop a theoretical framework for the network capacity model of the 
massive MIMO systems and apply it to the training process. Finally, we implement the 
proposed deep CNN-based pilot assignment scheme using a commercial vanilla CNN, which 
takes into account shift invariant characteristics. Through extensive simulation, we 
demonstrate that the proposed work realizes about a 98% theoretical upper-bound 
performance and an elapsed time of 0.842 ms with low complexity in the case of a 
high-user-density condition. 
 
 
Keywords: Deep Learning, CNN, MLP, pilot contamination, pilot assignment, massive 
MIMO, SIR 
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1. Introduction 

The Multi-Input Multi-Output (MIMO) technology is the most important technology in 
terms of network capacity in mobile communication [1,2]. The base stations (BS) for 6G 
technology have considered in using a number of antennas for the large capacity 
improvements [3,4]. This is because the use of more antennas in massive MIMO technologies 
than conventional MIMO technologies significantly improves the radiative energy efficiency 
and throughput by the elimination of intra-cell interference and concentrates power in narrow 
areas of space [5,6]. The Massive MIMO is generally known to be more than 100 times more 
efficient in radiant energy, as well as 10 times more capacity growth. In order to mitigate these 
negative impacts from adopting massive MIMO technology such as "contamination of pilot", 
which is the inter-cell interference effect [7,8], it requires the difficult task of assigning the 
pilots for users in mobile communication [9,10]. 

There are various approaches for realizing efficient pilot assignment solutions that improve 
the capacity of the overall systems [15]. It is challenging due to the pilot allocation problem 
with a large complexity, and it is difficult to formulate a mathematical model [11,12]. Firstly, 
Marzetta proposed a random pilot assignment scheme (R-PAS) as a basic approach that can be 
easily deployed in a practical system [7]. The R-PAS provides an minimum elapsed time 
owing to its fixed time complexity. However, the overall network capacity of the R-PAS is 
limited as compared to the theoretical optimal bound. This is owing to the fact that the R-PAS 
does not take into consideration the users’ different channel qualities. In [16], a smart pilot 
assignment scheme (S-PAS) was invented, which allocates the pilot sequence with the 
smallest inter-cell interference to the worst channel condition’s user in a sequential manner. In 
a multi-cell environment, all the cells are required to iteratively solve their own optimization 
problems until the solution is converged [13,14]. Owing to such an iterative procedure in the 
multi-cell environment, the S-PAS results in an increased computing delay as the number of 
cells increases. Here, the computing delay also depends on its convergence step size where 
there is a trade-off between performance and computing delay cost according to the step size. 
Recently, as a first approach to adopting deep learning techniques, which have recently 
emerged as a useful tool for solving complex and difficult problems with a large search space, 
in our preliminary work [17], we proposed a deep-learning-based pilot assignment scheme 
(DL-PAS). The DL-PAS achieves almost a 99.38% ideal performance with low complexity 
within a computing time of 0.92 ms on average. Even though this preliminary work suggests a 
novel method for adopting machine learning technology into a wireless networking problem, it 
is restrictively applicable only to low-density users due to the factorial increase in input 
features and output layers [18,19]. Thus, a performance study on high-density users was not 
conducted. Accordingly, the previous studies are based on heuristic approaches with 
sub-optimal performance or are hard to deploy in a practical system owing to their high 
time/space complexity [20,21]. Thus, a practical solution to the pilot assignment problem is 
required, which motivated the works [22].  
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Fig. 1. Importance of assigning the pilot 

 
This paper introduces a deep convolutional-neural-network-based (CNN-based) pilot 

assignment scheme (DC-PAS) for the massive MIMO systems. The proposed work is an 
extension of a prior work and adopts the advantages of CNN in learning image data [23-25]. 
The important contributions are summarized as follows. 
 
• In our scheme, by applying the CNN mechanism to the pilot assignment problem, we design 
new input features of the users’ locations in all cells as the image data with a two-dimensional 
fixed-size matrix. 
• Instead of using a sigmoid function, we construct output layers with linear space complexity 
according to the number of users. Here, in order to improve the accuracy of the proposed work, 
we utilize a sorting mechanism to map the pilot index into the user index in the ascending 
order. 
• A theoretical framework for the network capacity model of massive MIMO is derived by 
extending the model presented in [7], and we apply it into the training process. 
• We deploy the proposed DC-PAS under a commercial vanilla CNN by considering shift 
invariant characteristics. Using simulation, we check that the proposed work realizes about a 
98 % theoretical upper-bound performance and an elapsed time of 0.842 ms with low 
complexity in the case of a high-userdensity condition.• Our research is not limited to this 
vanilla CNN. There are CNNs that have been modified recently [23, 25, 28], and it is easy to 
apply to reflect modified CNNs. Later, it will be the future work to apply the revised CNN to 
improve performance. 
 

We can thus develop a practical learning-based pilot assignment scheme that is applicable 
to high-density users and suggest a method by which the deep learning mechanism could 
improve the network performance in the case of complex problems. 

Section II presents a overview of the massive MIMO. In Section III, we formulate the 
problem as a deep learning model and present the novel DC-PAS. Numerical results and 
performance analysis are explained in Section IV. We summarize and conclude this work in 
Section V. 
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2. System Model 
For the reader’s convenience, in Table 1, we present a list of the major symbols that are used 
in this paper with their definitions.  

We consider the massive MIMO systems that consist of 𝐿𝐿 multiple cells. Each cell has a 
BSBS with 𝑀𝑀 omni-directional antennas, where 𝑀𝑀 is generally assumed to be very large in the 
massive MIMO systems such that 𝑀𝑀 → ∞ . Pilot contamination occurs owing to a user 
assigned with the same pilot assignment from another cell. As illustrated in Fig. 1, the pilot 
contamination is small when assigning the same pilot to another cell’s users who are far from 
the cell. Within each cell, there are multiple terminals with a single antenna that conducts the 
uplink transmission. In order to model this in a manner similar to our preliminary work [17], 
we define 𝐼𝐼 as the set of cells, where |𝐼𝐼|=𝐿𝐿 denotes the total number of cells, and 𝐾𝐾𝑖𝑖 as the set 
of terminals in the 𝑖𝑖-th cell for each 𝑖𝑖 ∈ 𝐼𝐼, where |𝐾𝐾𝑖𝑖|=𝑈𝑈𝑖𝑖 denotes the total number of terminals 
in the cell. For the channel estimation, a set of orthogonal pilots is assigned and transmitted to 
the terminals, where the total number of orthogonal pilots used in each cell is 𝑃𝑃 . 
Correspondingly, the BSBS can measure the channel condition for up to 𝑃𝑃 terminals, which 
means that the maximum number of terminals within a cell that can simultaneously transmit 
data is only up to 𝑃𝑃 terminals. The channel is composed of large- and small-scale propagation 
effects. The large-scale propagation effect comprises pathloss and shadowing. For each 𝑖𝑖, 𝑗𝑗 ∈
𝐼𝐼 and 𝑘𝑘 ∈ 𝐾𝐾𝑗𝑗, we define 𝑟𝑟𝑖𝑖,𝑘𝑘 and 𝑧𝑧𝑖𝑖,𝑘𝑘, which denote the distance and shadowing, respectively, 
between the BSBS of the 𝑖𝑖-th cell and 𝑘𝑘-th terminal, which may reside in the 𝑗𝑗-th cell. 
Accordingly, as in [7, 8], the large-scale propagation effect can be modeled using 𝛽𝛽𝑖𝑖,𝑘𝑘 =
𝑧𝑧𝑖𝑖,𝑘𝑘𝑟𝑟𝑖𝑖,𝑘𝑘

−𝛾𝛾 , where 𝛾𝛾  is the pathloss exponent. In addition, in the case of the small-scale 
propagation effect, the fading coefficient between the 𝑚𝑚-th antenna of the BS in 𝑖𝑖-th cell and 
𝑘𝑘-th terminal is denoted by ℎ𝑚𝑚,𝑖𝑖,𝑘𝑘, where the coherence time 𝑇𝑇𝑐𝑐 is assumed to be constant over 
the fading coefficient ℎ𝑚𝑚,𝑖𝑖,𝑘𝑘. Finally, the overall channel gain 𝑔𝑔𝑚𝑚,𝑖𝑖,𝑘𝑘 between the 𝑚𝑚-th antenna 
of the BS in 𝑖𝑖-th cell and 𝑘𝑘-th terminal is denoted by 𝑔𝑔𝑚𝑚,𝑖𝑖,𝑘𝑘 = ℎ𝑚𝑚,𝑖𝑖,𝑘𝑘�𝛽𝛽𝑖𝑖,𝑘𝑘. As assumed in 
other literatures on massive MIMO, we assume that �𝛽𝛽𝑖𝑖,𝑘𝑘� values are known at the BSs such 
that it can be learned in the network. This is because �𝛽𝛽𝑖𝑖,𝑘𝑘� are varying much more slowly than 
the small-scale fading coefficients, and they are independent of frequency [8]. In contrast, the 
fading coefficient ℎ𝑚𝑚,𝑖𝑖,𝑘𝑘 should be estimated for every coherence time 𝑇𝑇𝑐𝑐. For the estimation 
of ℎ𝑚𝑚,𝑖𝑖,𝑘𝑘, it is assumed that a set of 𝑃𝑃 orthogonal pilot sequences is used for each cell wherein 
𝑃𝑃 depends on the channel and system parameters such as the maximum delay spread, channel 
coherence time, etc. In addition, the orthogonality of the pilots can be implemented using a 
few methods: i) each pilot can be transmitted in the form of one orthogonal frequency division 
multiplexed (OFDM) symbol in one subcarrier or ii) each pilot can be transmitted in the form 
of an orthogonal sequence over the time–frequency domain. Here, the proposed work is not 
restricted to any specific implementation; only 𝑃𝑃 the number of pilots is important in our 
analysis.  

Moreover, as in [7], we assume that all other cells in the network use the same pilot set. We 
investigated the effect of using different orthogonal pilot sequences in other cells, and it was 
demonstrated that essentially the same performance was obtained. 
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Table 1. List of major symbols 
Symbol Description 
𝐿𝐿  The total number of cells  
𝑀𝑀  The total number of omni-directional antennas of a BS  
𝐼𝐼  The set of cells  
𝐾𝐾𝑖𝑖  The set of terminals in the 𝑖𝑖-th cell  
𝑈𝑈𝑖𝑖  The number of terminals in the 𝑖𝑖-th cell  
𝑃𝑃  The total number of pilots of a BS  
𝑖𝑖  The 𝑖𝑖-th cell  
𝑚𝑚  The 𝑚𝑚-th antenna  
𝑘𝑘  The 𝑘𝑘-th terminal  
𝑝𝑝  The 𝑝𝑝-th pilot  
𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘  The distance between the 𝑖𝑖-th cell and 𝑘𝑘-th terminal in the 𝑗𝑗-th cell  
𝑧𝑧𝑖𝑖,𝑗𝑗,𝑘𝑘  The shadowing between the 𝑖𝑖-th cell and 𝑘𝑘-th terminal in the 𝑗𝑗-th cell  
𝛽𝛽𝑖𝑖,𝑗𝑗,𝑘𝑘  The large-scale fading between the 𝑖𝑖-th cell and 𝑘𝑘-th terminal in the 𝑗𝑗-th cell  
𝛾𝛾  The pathloss exponent  

ℎ𝑚𝑚,𝑖𝑖,𝑘𝑘  The small-scale fading between the 𝑚𝑚-th antenna of the BS in the 𝑖𝑖-th cell and 
𝑘𝑘-th terminal 

𝑇𝑇𝑐𝑐  The coherence time  
𝑔𝑔𝑚𝑚,𝑖𝑖,𝑘𝑘  The overall channel gain between the 𝑚𝑚-th antenna of the BS in the 𝑖𝑖-th cell 

and 𝑘𝑘-th terminal 
S𝐼𝐼𝑅𝑅𝑖𝑖,𝑘𝑘𝑢𝑢   The uplink signal-to-interference ratio (SIR) of the 𝑘𝑘-th terminal in the 𝑖𝑖-th 

cell 
𝐵𝐵𝑤𝑤  The bandwidth  
𝛼𝛼  The frequency reuse factor  

𝑇𝑇b𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  The OFDM symbols of one frame  
𝑇𝑇p𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  The time for sending reverse pilots  
𝑇𝑇𝑢𝑢  The data transmission interval  
𝑇𝑇𝑠𝑠  The OFDM symbol interval  
𝐶𝐶𝑖𝑖𝑢𝑢  The total uplink capacity of 𝑖𝑖-th cell  

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢   The total uplink capacity of the entire network comprising 𝐿𝐿 cells  
 

The channel vector from the 𝑘𝑘-th terminal in the 𝑗𝑗-th cell to the 𝑚𝑚-th antenna of the BS in 
the 𝑖𝑖-th cell is given by  

g𝑚𝑚,𝑖𝑖,𝑗𝑗,𝑘𝑘 = h𝑚𝑚,𝑖𝑖,𝑗𝑗,𝑘𝑘�βi,j,k = h𝑚𝑚,𝑖𝑖,𝑗𝑗,𝑘𝑘�zi,j,kri,j,k
−γ .                            (1) 

 
where ℎ𝑚𝑚,𝑖𝑖,𝑗𝑗,𝑘𝑘 is the small-scale fading between the 𝑚𝑚-th antenna of the BS in the 𝑖𝑖-th cell and 
𝑘𝑘-th terminal in the 𝑗𝑗-th cell, 𝛽𝛽𝑖𝑖,𝑗𝑗,𝑘𝑘 is the large-scale fading between the 𝑖𝑖-th cell and 𝑘𝑘-th 
terminal in the 𝑗𝑗-th cell, 𝑧𝑧𝑖𝑖,𝑗𝑗,𝑘𝑘 is the shadowing between the 𝑖𝑖-th cell and 𝑘𝑘-th terminal in the 
𝑗𝑗-th cell, 𝑟𝑟𝑖𝑖,𝑗𝑗,𝑘𝑘 is the distance between the 𝑖𝑖-th cell and 𝑘𝑘-th terminal in the 𝑗𝑗-th cell, and 𝛾𝛾 is 
the pathloss exponent. 
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The uplink SIR of the 𝑘𝑘-th terminal in the 𝑖𝑖-th cell is obtained as  

 S𝐼𝐼𝑅𝑅𝑖𝑖,𝑘𝑘𝑢𝑢 = |𝑔𝑔𝑚𝑚,𝑖𝑖,𝑖𝑖,𝑘𝑘
𝐻𝐻 𝑔𝑔𝑚𝑚,𝑖𝑖,𝑖𝑖,𝑘𝑘|2

∑j≠i |𝑔𝑔𝑚𝑚,𝑖𝑖,𝑗𝑗,𝑘𝑘
𝐻𝐻 𝑔𝑔𝑚𝑚,𝑖𝑖,𝑗𝑗,𝑘𝑘|2+

|𝜖𝜖𝑖𝑖,𝑘𝑘
𝑢𝑢 |2

𝜌𝜌𝑢𝑢

. 

 
With 𝑀𝑀 → ∞, we obtain  

𝑀𝑀 → ∞     β𝑖𝑖,𝑖𝑖,𝑘𝑘
2

∑j≠i𝛽𝛽𝑖𝑖,𝑗𝑗,𝑘𝑘
2 .                                              (2) 

 
In the uplink, the capacity of the 𝑘𝑘-th terminal in the 𝑖𝑖-th cell is given by   

𝐶𝐶𝑖𝑖,𝑘𝑘𝑢𝑢 = 𝐵𝐵𝑤𝑤 �
1
𝛼𝛼
� �𝑇𝑇b𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑇𝑇p𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇b𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� �𝑇𝑇𝑢𝑢

𝑇𝑇𝑠𝑠
� log2�1 + S𝐼𝐼𝑅𝑅𝑖𝑖,𝑘𝑘𝑢𝑢 � �

𝑏𝑏𝑏𝑏𝑏𝑏
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�        (3) 

 
where 𝐵𝐵𝑤𝑤 is the bandwidth, 𝛼𝛼 is the frequency reuse factor, 𝑇𝑇b𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the time for the OFDM 
symbols of one frame, 𝑇𝑇p𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the time for sending reverse pilots, 𝑇𝑇𝑢𝑢 is the data transmission 
interval, and 𝑇𝑇𝑠𝑠 is an OFDM symbol interval. 

The sum capacity of 𝑖𝑖-th cell is given by  
 𝐶𝐶𝑖𝑖𝑢𝑢 = ∑𝑈𝑈𝑖𝑖𝑘𝑘=1 𝐶𝐶𝑖𝑖,𝑘𝑘

𝑢𝑢       �𝑏𝑏𝑝𝑝𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�                                    (4) 
 

The total capacity of the entire network comprising 𝐿𝐿 cells is given by  
 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢 = ∑𝐿𝐿𝑖𝑖=1 𝐶𝐶𝑖𝑖𝑢𝑢      (𝑏𝑏𝑏𝑏𝑏𝑏)                                      (5) 

 
For achieving maximum capacity of the entire systems, the optimization over  all the cells in 

the network should be conducted simultaneously. Here, the large-scale propagation effect 
𝛽𝛽𝑖𝑖,𝑗𝑗,𝑘𝑘 is considered as a correlated parameter as it results in inter-cell interference. 

In [7], considering only the special case of 𝑃𝑃 = 𝑈𝑈𝑖𝑖 ,∀𝑖𝑖, the capacity of the entire systems 
was studied. In practice, however, the assumption of 𝑃𝑃 = 𝑈𝑈𝑖𝑖 ,∀𝑖𝑖 is not realistic because the 
actual number of terminals 𝑈𝑈𝑖𝑖 can be varied from different cells, and moreover, it can change 
with time. That is, the number of actual terminals 𝑈𝑈𝑖𝑖 cannot be generalized as 𝑃𝑃. This has 
motivated our work. 

Considering the general case of an arbitrary number of terminals 𝑈𝑈𝑖𝑖, our objective is to 
improve the capacity of the massive MIMO systems. The case of 𝑈𝑈𝑖𝑖 > 𝑃𝑃 can be considered as 
a high-user-density scenario; in this case, only 𝑃𝑃 terminals out of the 𝑈𝑈𝑖𝑖 terminals must be 
selected for data transmission in each time slot, which will be referred to as terminal selection. 
In contrast, the case of 𝑈𝑈𝑖𝑖 ≤ 𝑃𝑃 can be considered as a low-user-density scenario; in this case, 
all 𝑈𝑈𝑖𝑖  terminals should be selected for data transmission, which means that no terminal 
selection is required. However, 𝑈𝑈𝑖𝑖 pilots should be selected for channel estimation out of 𝑃𝑃 
pilots. This is referred to as pilot selection. Finally, when the terminals or pilots are selected, 
the (selected) pilots must then be assigned to the (selected) terminals, which is referred to as 
pilot assignment. It should be noted that pilot assignment is required for both overloaded and 
underloaded cases. When there are 𝑈𝑈𝑖𝑖 terminals and 𝑃𝑃 pilots in a cell, min(𝑈𝑈𝑖𝑖 ,𝑃𝑃) means the 
maximum number of pilots, which can be assigned to terminals in a cell. Specifically, 
min(𝑈𝑈𝑖𝑖 ,𝑃𝑃) pilots are assigned to min(𝑈𝑈𝑖𝑖 ,𝑃𝑃) terminals. We first derive the capacity as a 
function of the selected terminals, selected pilots, and pilot assignment. Using the capacity 
expression, we then propose an optimal equation. 
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3. Proposed DC-PAS : Deep CNN Learning Framework 
The pilot assignment with our proposed work is based on a deep CNN learning that could be 
suitable for large neuron networks with shift-invariant characteristics such as the image 
recognition area [23]. 

3.1 Preliminaries 
There is a limitation of the DL-PAS in applications to a high-user-density nature owing to the 
factorial increase in both output nodes and multi-layer perceptions (MLP) weight.  

 
Fig. 2. Problem of high density in DL-PAS 

 
As shown in Fig. 2, even though the DL-PAS performs well in the case of a 

low-user-density, it requires a significant amount of output layers even in the case of nine 
users. For ten users, almost 25,401,600 output nodes are required. That is, it is impossible to 
implement the DL-PAS in a practical system for handling a high-user-density. 

In machine learning, the deep CNN is a image oriented neural network in many areas. The 
deep CNN outperforms other classification algorithms with little preprocessing by reflecting 
the location characteristics of pictures. Such advantages have inspired us to apply the deep 
CNN mechanism to the pilot assignment problem in order to solve the problem focused on in 
prior works. The MLP is a mesh-shaped neuron network structure that is easy to create. Even 
though it performs well with almost a 100 % accuracy in learning for small-sized neuron 
networks, it requires high complexity and a huge amount of data to learn for realizing a 
relevant accuracy. That is, it is only suitable for small-sized neuron networks. Conversely, 
deep CNN is suitable for large-sized neuron networks. For instance, the ResNet, which is a 
good example of a deep CNN, consists of more than 100 layers and a high number of input 
nodes as the number of image pixels in the picture [23]. It should be noted that deep CNN is 
less precise in learning in the case of a small-sized neuron network. 

3.2 Proposed DC-PAS algorithm 
We introduce the entire deep learning process to apply to the proposed system. 
Deep learning can be adopted in the pilot assignment scheme by following procedure: 
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3.2.1 Getting data for machine learning 
In the case of 𝑈𝑈𝑙𝑙 > 𝑃𝑃, only 𝑃𝑃 terminals must be selected out of 𝑈𝑈𝑙𝑙 for data transmission. The 
set of selected terminals is defined as follows.  
 
 Definition 1 (Set of Selected Terminals): Let Ω𝑙𝑙 denote the index set of the selected terminals 
in the 𝑙𝑙-th cell (out of all 𝑈𝑈𝑙𝑙 terminals) with |Ω𝑙𝑙| = min(𝑃𝑃,𝑈𝑈𝑙𝑙).            �  
 

 

 
   Fig. 3. Proposed deep CNN-based pilot assignment scheme 

 
 

The next issue is pilot selection: when 𝑈𝑈𝑙𝑙 ≤ 𝑃𝑃, only 𝑈𝑈𝑙𝑙 pilots must be selected out of 𝑃𝑃 for 
the channel estimation of 𝑈𝑈𝑙𝑙 terminals. The set of selected pilots is defined as follows.  
 
 Definition 2 (Set of Selected Pilots): Let Γ𝑙𝑙 denote the set of selected pilots in the 𝑙𝑙-th cell (out 
of all 𝑃𝑃 pilots) with |Γ𝑙𝑙| = min(𝑃𝑃,𝑈𝑈𝑙𝑙).            �  
 

Once the terminals and pilots are selected, they must be one-to-one mapped. This pilot 
assignment is defined by a one-to-one mapping Π𝑙𝑙(⋅) between the terminal indices in Ω𝑙𝑙 and 
the pilot indices in Γ𝑙𝑙.  
 
 Definition 3 (Mapping between Terminals and Pilot (pilot assignment)): When 𝑝𝑝 ∈ Γ𝑙𝑙, Π𝑙𝑙(𝑝𝑝) 
denotes the index of the terminal in Ω𝑙𝑙, which 𝑝𝑝-th pilot is allocated to. When 𝑝𝑝 ∉ Γ𝑙𝑙, Π𝑙𝑙(𝑝𝑝) 
does not give any index of the terminal in Ω𝑙𝑙, and it is denoted as Π𝑙𝑙(𝑝𝑝) = 0, which means that 
the 𝑝𝑝-th pilot is  not assigned to any terminal in 𝑙𝑙-th cell.            �  
 

Using the expression of 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢  in equation (5), we propose the following optimization 
problem in order to maximize the network capacity:  
 

 �Ω𝑙𝑙
o𝑝𝑝𝑝𝑝 ,Γ𝑙𝑙

o𝑝𝑝𝑝𝑝 ,Π𝑙𝑙
o𝑝𝑝𝑝𝑝� = arg max

(Ω𝑙𝑙,Γ𝑙𝑙,Π𝑙𝑙)
𝐶𝐶n𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(Ω𝑙𝑙 ,Γ𝑙𝑙 ,Π𝑙𝑙).                         (6) 
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It should be noted that (6) is a joint optimization over all three variables (Ω𝑙𝑙 , Γ𝑙𝑙 ,Π𝑙𝑙). 
However, if we consider the cases of 𝑈𝑈𝑙𝑙 > 𝑃𝑃 and 𝑈𝑈𝑙𝑙 ≤ 𝑃𝑃 individually, the problem is reduced 
to a simpler joint optimization of (Ω𝑙𝑙 ,Π𝑙𝑙) or (Γ𝑙𝑙 ,Π𝑙𝑙). 

Subsequent to extracting the equation of the joint optimization for the terminal selection and 
pilot assignment according to the location of each terminal, we use that equation as the 
learning data for the deep CNN model. 1) Induce joint optimization for terminal selection and 
pilot assignment in an equation according to the terminal location. 2) Calculate the joint 
optimization for the terminal selection and pilot assignment according to the random terminal 
location. 3) Classify the data using the deep CNN model. The input value is considered as the 
terminal location, and the output is considered as the result of the joint optimization for the 
terminal selection and pilot assignment. 4) Data could be obtained from the result of the joint 
optimization for the terminal selection and pilot assignment equation. 
 

3.2.2 Building the deep CNN model and the proposed pilot assignment scheme 
We use 32 kernels (3x3 size) and max-pooling (2x2 size). Finally, we use two fully connected 
layers to distinguish the output as shown in Fig. 3. 

The algorithm for designing the input feature is explained in Algorithm 1. We initialize the 
input data from the coordinates of all the cells and terminals by mapping two-dimensional 
coordinates onto a one-dimensional array. Based on this input data, we create a 
two-dimensional image matrix for the CNN. 
 
 
Algorithm 1 Algorithm for designing the input feature based on the square matrix 
imagination method 
Initialization :  
(a) Obtaining �𝑥𝑥𝑖𝑖,𝑘𝑘 ,𝑦𝑦𝑖𝑖,𝑘𝑘�, which are the coordinates of the 𝑖𝑖-th cell and 𝑘𝑘-th terminal.  
 
Two-dimensional coordinates onto one-dimensional array  
(a) Ordering the cells and terminals.  
  - 1st cell : the center of the cell is first.  
  - 2nd cell∼7th cell : the other outer cells are clockwise.  
(b) Ordering the terminals in the cells.  
(c) One-dimensional input plat array (𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖,𝑘𝑘) :  

for i = 1 to 𝐿𝐿 for k = 1 to 𝑈𝑈𝑙𝑙  
𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑈𝑈𝑙𝑙∗(𝑖𝑖−1)+2∗(𝑘𝑘−1)+1 = 𝑥𝑥𝑖𝑖,𝑘𝑘;  
𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑈𝑈𝑙𝑙∗(𝑖𝑖−1)+2∗(𝑘𝑘−1)+2 = 𝑦𝑦𝑖𝑖,𝑘𝑘;  

end for end for  
Preparing the input feature : two-dimensional image matrix  
(a) Width of input square matrix (S) : ��𝐿𝐿 ∗ 𝑈𝑈𝑙𝑙 ∗ 2�  
(b) Input two-dimensional image matrix (𝑖𝑖𝑛𝑛𝑎𝑎,𝑏𝑏) :  

for a = 1 to 𝑆𝑆 for b = 1 to 𝑆𝑆  
if (a*S+b > 𝐿𝐿 ∗ 𝑈𝑈𝑙𝑙) then 𝑖𝑖𝑛𝑛𝑎𝑎,𝑏𝑏 = 0.0; 
else 𝑖𝑖𝑛𝑛𝑎𝑎,𝑏𝑏 = 𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑎𝑎∗𝑆𝑆+𝑏𝑏; end if  
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end for end for 
Algorithm 2 Algorithm for designing the output label and assigning the pilot for each 
terminal based on the pilot value sorting method 
Initialization :  
(a) Obtaining Π𝑖𝑖,𝑘𝑘, which is the pilot assignment of the 𝑖𝑖-th cell and 𝑘𝑘-th terminal.  
 
Preparing the output label for training  
(a) Output label (𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑖𝑖) :  

for i = 1 to 𝐿𝐿 for k = 1 to 𝑈𝑈𝑙𝑙  
𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑈𝑈𝑙𝑙∗(𝑖𝑖−1)+𝑘𝑘 = Π𝑖𝑖,𝑘𝑘;  

end for end for  
 
Assigning the pilot for each terminal  
(a) Predicted output label (𝑜𝑜𝑜𝑜𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖)  
(b) Divided output label (𝑜𝑜𝑜𝑜𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖,𝑘𝑘) in the 𝑖𝑖-th cell and 𝑘𝑘-th terminal  
(c) Assigned pilot (𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑖𝑖,𝑘𝑘) in the 𝑖𝑖-th cell and 𝑘𝑘-th terminal :  

for i = 1 to 𝐿𝐿  
sorted_index = sort(𝑜𝑜𝑜𝑜𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖,𝑘𝑘, ascending);  

for k = 1 to 𝑈𝑈𝑙𝑙  
𝑜𝑜𝑜𝑜𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝑘𝑘]

= 𝑘𝑘;  
end for end for  

 
The algorithm for designing the output label and assigning the pilot for each terminal is 

presented in Algorithm 2. We set the pilot assignment results and called it as the “pilot value” 
as an output label. For instance, for four pilots, there are four pilot values for identifying those 
pilots with an index such that {3,2,1,4}. Each location means terminal’s order. That is, 3rd 
pilot is mapped to 1st terminal, 2nd pilot is 2nd terminal, 1st pilot is 3rd terminal, and 4th pilot 
is mapped to 4th terminal, respectively. Here, the order of the output is a combination of the 
assigned pilot values for each cell and the number of terminals residing in the cell. It should be 
noted that during the prediction, the output value might return a real number, such as 
{1.2,1.9,3.4,4.1}, and not an integer. Thus, the post-processing is necessary for mapping a real 
number value into an actual pilot value. In Algorithm 2, this post-processing is based on an 
ascending sorting of the real number values and then mapping them into the integer-valued 
pilot values in the ascending order. For example, each cell should first be found. For the first 
cell, we can sort the predicted values in the increasing order. Their order will be Π1,1={1.2} <
Π1,2={1.9} < Π1,3={3.4} < Π1,4={4.1}. We then assign pilots to Π1,1={1} < Π1,2={2} <
Π1,3={3} < Π1,4={4} for each terminal in the first cell. Similarly, for the seventh cell, the 
expected value is first debited. Their order will be Π7,1={0.9} < Π7,3={2.1} < Π7,2={3.3} <
Π7,4={3.9}. We then assign the pilot value to Π7,1={1} < Π7,3={2} < Π7,2={3} < Π7,4={4} 
for each terminal in the seventh cell. The manipulation of training data sets consists of three 
stages: the creation of training sets, the design of key metrics, and the labeling. First, training 
samples shall be designed for the generation of training sets. It is going to adopt location of 
devices as training set in order to detect major effects such as large-scale fading. For 𝐿𝐿 cells, 
𝑈𝑈𝑙𝑙  terminals, and P pilots (𝑈𝑈𝑙𝑙 = 𝑃𝑃  for balance), the input size is 2 (position/terminal 
coordination) x 𝑈𝑈𝑙𝑙 (terminal/cell) x 𝐿𝐿 (cell). For example, suppose each of the seven cells has 
four terminals, the input feature vector is [8 x 8 x 1]. Second, major performance metrics 
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should be designed. This is adopted as a key metric to maximize total uplink network 
capacity𝐶𝐶n𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(Ω𝑙𝑙 ,Γ𝑙𝑙 ,Π𝑙𝑙). Finally, we should label on the basis of this key performance 
indicator. Then the label for each set of training is calculated (e.g. pilot assignment). Common 
deep learning algorithms, such as CNN, choose one of the combinations of the total result 
values on the label. That is, the number of output-layer neurons is the number of combinations 
that get the total result. For DC-PAS, 𝐿𝐿 cell, 𝑈𝑈𝑙𝑙 terminal, and 𝑃𝑃 pilot (𝑈𝑈𝑙𝑙 = 𝑃𝑃 for balance), it is 
not practical to deploy as the terminal 𝑈𝑈𝑙𝑙 number increases because the output label is (𝑈𝑈𝑙𝑙!) x 
𝐿𝐿. Thus, to address this problem, a new version of the deep learning network is proposed, with 
minor modifications to the conventional deep learning network, to reduce the number of labels. 
The key idea is to resize the output layer to the number of pilot allocation cases per cell. This is 
because each cell has its own pilot task. Thus, for 𝐿𝐿 cell, 𝑈𝑈𝑙𝑙 terminal, and 𝑃𝑃 pilot, the size of 
the output label is (𝑈𝑈𝑙𝑙) x 𝐿𝐿 . For example, assuming that each of the seven cells has 10 
terminals, the combination of the results is required to be (10!) x 7 = 25,401,600 ≈ 2.54 x 
107. This means that the size of the output label is [2.54 x 107] and the number of neurons in 
the output layer is [2.54 x 107]. For example, if each of the seven cells has four terminals, 10 
x 7 = 70, only a combination of result values is required. That is, while the traditional method 
requires [2.54 x 107], the number of neurons in the output layer is only [70]. Therefore, the 
proposed DC-PAS would reduce the number of neurons in the order of 106. Afterwards, 
extract Π𝑖𝑖,𝑘𝑘={𝑝𝑝} label, where Π𝑖𝑖,𝑘𝑘  is a pilot allocation with the 𝑖𝑖-th cell and the 𝑘𝑘-th terminal. 

4. Performance Evaluation 
 

 
Fig. 4. Simulation setting 
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Here, the detailed performance evaluation of the suggested DC-PAS algorithm is explained. 
We compare the proposed DC-PAS with the traditional schemes such as a 
deep-learning-based pilot assignment scheme (DL-PAS), a random pilot assignment scheme 
(R-PAS), a smart pilot assignment scheme (S-PAS) and a exhaustive-search pilot assignment 
scheme (ES-PAS). The performance measures used are the deep learning accuracy, 
normalized capacity gain, elapsed time, and training time. The deep learning accuracy is 
considered as a metric for evaluation of classification models. Specifically, accuracy has the 
following definition: Accuracy=Number of correct predictions/Total number of predictions 
[26, 27]. Accordingly, in this paper, we measured this learning accuracy by comparing 
between exhaustive based pilot assignment (theoretical upper-bound = correct predictions) 
and prediction based pilot assignment.  
 
 

  Table 2. Deep learning system environment 
 Description 

DL toolkit Tensorflow 1.12  
Optimization  Adam optimizer  
Loss function  Mean square error  
Learning rate  10−4  
Dropout  Train : 0.5, Test : 1.0  
Activation  Elu  

 
Table 3. Mobile network model environment 

 Description 
Network 19 hexagonal cells : seven inner cells and twelve outer cells 
Cell Hexagonal cell, 𝑟𝑟𝑐𝑐  : 1600m, 𝑟𝑟ℎ : 100m at the center of cell  
Terminal Uniformly, terminals are generated within the hexagonal cells  
Wireless Frequency re-use factor : 1, path-loss exponent : 4, standard deviation : 8.0 dB  

 
Table 2 lists the details of the deep learning system environment with the TensorFlow with 

the Adam optimizer, the loss function of the mean square error, the learning rate of 10−4, the 
activation of Elu and the dropout which are 0.5 for train and 1.0 for test. We get the simulation 
results for a mobile network consisting of twelve outer cells in the outer ring and nineteen 
hexagonal cells consisting of seven inner cells. Twelve external cells are used as boundaries of 
the network, and the capacity is measured only in seven internal cells in Fig. 4 and Table 3. As 
in [7], we suppose that the cell radius is 1600 m and that there is a hole in the center of the cell 
with a radius 100 m. For each cell, the terminals are created uniformly within each cell except 
in the central holl area. Assume that the frequency reuse factor is 1, the path-loss exponent is 4, 
and the shadowing standard deviation is 8.0 dB. 

Fig. 5 shows the performance analysis for low-user-density (𝑈𝑈𝑙𝑙 ≤ 𝑃𝑃). The accuracy of the 
suggested DC-PAS with various numbers of users, i.e., two users and four users, is denoted by 
DC-PAS(2) and DC-PAS(4), respectively, as the samples number varies from 2,000 to 20,000. 
The DL-PAS with various users’ numbers, i.e., two users and four users are also denoted by 
DL-PAS(2) and DL-PAS(4), respectively.  
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(a)                                                                        (b) 

Fig. 5. Performance in low-user-density case (𝑈𝑈𝑙𝑙 ≤ 𝑃𝑃) for (a) accuracy, (b) normalized capacity gain 

 
Fig. 6. Comparison of output nodes with the DL-PAS versus that with the proposed DC-PAS 

 
As depicted in Fig. 5(a), the accuracy of the suggested DC-PAS increases as the sample size 

increases, where the achieved accuracy of the suggested DC-PAS is almost 96.09%, which is 
similar to the 96.82% of the DL-PAS. For the normalized capacity gain in Fig. 5(b), both the 
DL-PAS and the proposed DC-PAS can realize a similar performance as 99.44% and 99.22%, 
respectively. The proposed DC-PAS is characterized by searching for similar patterns but has 
few patterns for a small number of users, which indicates a poor performance. The DC-PAS is 
slightly less capable than the DL-PAS but does not differ significantly. That is, the normalized 
capacity gain of the suggested DC-PAS is similar to that of the DL-PAS. 

Fig. 6 shows the comparison of the output nodes with the DL-PAS versus that of the 
suggested DC-PAS. As expected, as the number of terminals increases, the number of output 
nodes in the case of the DL-PAS has faster growth rates than those of the suggested DC-PAS, 
which has linear growth rates. That is, the proposed DC-PAS requires a smaller number of 
output nodes for a high number of terminals. 
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(a)                                                                     (b) 

 
 (c) 

Fig. 7. Performance for the high-user-density case (𝑈𝑈𝑙𝑙 > 𝑃𝑃) for (a) accuracy of the suggested DC-PAS, 
(b) normalized capacity gain, and (c) elapsed time 

 
Fig. 7 shows performance analysis for a high-user-density (𝑈𝑈𝑙𝑙 > 𝑃𝑃). The proposed accuracy 

of DC-PAS is expressed as DC-PAS (6), DC-PAS (8), and DC-PAS (10) because each of the 
different sample numbers, along with six users. As Fig. 7(a) shows, the proposed accuracy of 
the DC-PAS increases to an average of 93.84% of the proposed work. When user densities are 
high, DL-PAS should be complex in implementation and excluded from evaluation. Fig. 7(b) 
illustrates the capacity gains for the various schemes. We define the normalized capacity gain 
𝐺𝐺𝑛𝑛 as  

 G𝑛𝑛 = 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑢𝑢

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑢𝑢                                                        (7) 

 
where the theoretical upper-bound capacity 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  can be calculated from ES-PAS. 
 

In this study, various iterations of S-PAS(1000) were tested with S-PAS(10), S-PAS(100), 
and S-PAS(1000) repeated 10 times, 100 times, and 1000 times, respectively. 
The normalized capacity gain is ES-PAS(100%) > DC-PAS(98%) > S-PAS(1000)(95%) > 
S-PAS(100)(93%) >  S-PAS(10)(91%) >  R-PAS(89%) for each scheme. The DC-PAS 
realizes a nearly 98.15% normalized capacity gain of in 20,000 samples and ten terminals. As 
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shown in Fig. 7(a), the proposed normalized capacity increase in DC-PAS increases slightly 
with the number of samples. On the other hand, other existing schemes are independent of the 
number of samples because they do not adopt a learning mechanism. As a result, it is clear that 
the proposed work exceeded the existing pilot assignment system.Specifically, R-PAS, which 
randomly assigns pilots to users, shows the worst performance despite the complexity and ease 
of deployment. Normalised gains from S-PAS increase with the number of repetitions. It 
should be noted that increasing the number of iterations of the S-PAS significantly increases 
the elapsed time and constrains the S-PAS. Fig. 7(c) shows performance in terms of time 
elapsed from various pilot allocation plans. where R-PAS has the lowest elapsed time because 
of its low complexity. Only 0.842 ms is required for the proposed DC-PAS. It should be noted 
that the computational ability and training time of the in-depth learning process can be further 
analyzed as a practical concern. For S-PAS, the elapsed time increases with the number of 
repetitions such as S-PAS(1000) > S-PAS(100) > S-PAS(10). It also evaluates the elapsed 
time of the ES-PAS returning the theoretical capacity upper limit. Despite notable 
performance, the elapsed time in this case is nearly 13 hours in the same environment. This 
means that this evaluation is not included in the figure because the ES-PAS cannot be placed in 
the actual system. 
 

 
(a)                                                                      (b) 

Fig. 8. Performance analysis (a) elapsed time of the suggested DC-PAS, (b) training time 
    

Fig. 8 shows the performance in terms of the elapsed time and training time for the proposed 
DC-PAS. We observe that the elapsed time increases according to the number of terminals as 
shown in Fig. 8(a). This is because, as the number of terminals increases, the number of output 
nodes increases linearly, thus resulting in a larger model size and greater complexity. In 
addition, we further observe that the training time also increases according to the number of 
samples as shown in Fig. 8(b). This is because a larger number of samples requires a larger 
amount of data for processing in the training phases. 

5. Conclusion 
We have proposed a DC-PAS in order to reduce the difficulty of applying a 
deep-learning-based scheme to a high-user-density nature because of the factorial increase in 
both input features and output layers. Specifically, the input and labels are considered as the 
users’ positions in all the cells and the pilot allocations, respectively. The pre-trained optimal 
pilot allocations with the given users’ positions are provided through a mathematical 
calculation for a high-user-density as the training data set, and a near-optimal pilot assignment 
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is returned from analyzing the data set. The obtained results demonstrate that our proposed 
DC-PAS realizes an nearly 98% performance with low complexity and requiring a computing 
time of only 0.842 ms. In the future, in order to reduce the load changes and change the 
minimum pilot assignment, the current work can be expanded by utilizing reinforcement 
learning considering the previous state. 
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