• Title/Summary/Keyword: MIMO Antenna

Search Result 446, Processing Time 0.022 seconds

Device-to-Device assisted user clustering for Multiple Access in MIMO WLAN

  • Hongyi, Zhao;Weimin, Wu;li, Lu;Yingzhuang, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2972-2991
    • /
    • 2016
  • WLAN is the best choice in the place where complex network is hard to set up. Intelligent terminals are more and more assembled in some areas now. However, according to IEEE 802.11n/802.11ac, the access-point (AP) can only serve one user at a single frequency channel. The spectrum efficiency urgently needs to be improved. In theory, AP with multi-antenna can serve multiple users if these users do not interfere with each other. In this paper, we propose a user clustering scheme that could achieve multi-user selection through the mutual cooperation among users. We focus on two points, one is to achieve multi-user communication with multiple antennas technique at a single frequency channel, and the other one is to use a way of distributed users' collaboration to determine the multi-user selection for user clustering. Firstly, we use the CSMA/CA protocol to select the first user, and then we set this user as a source node using users' cooperation to search other proper users. With the help of the users' broadcast cooperation, we can search and select other appropriate user (while the number of access users is limited by the number of antennas in AP) to access AP with the first user simultaneously. In the network node searching, we propose a maximum degree energy routing searching algorithm, which uses the shortest time and traverses as many users as possible. We carried out the necessary analysis and simulation to prove the feasibility of the scheme. We hope this work may provide a new idea for the solution of the multiple access problem.

Collision Performance Improvement in Orthogonal Code Hopping Multiplexing Systems Using Multiple Antennas (다중 안테나를 이용한 직교 부호 도약 다중화 시스템의 성능향상)

  • Jung, Bang-Chul;Lee, Woo-Jae;Park, Yeoun-Sik;Jeon, Seong-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2100-2112
    • /
    • 2011
  • An orthogonal code hopping multiplexing (OCHM) technique has been proposed for accommodating a large number of users with low channel activities than the number of orthogonal codewords through statistical multiplexing in downlink cellular systems. In this paper, a multiple input multiple output (MIMO) antenna based OCHM system is proposed to improve the performance. Each modulated symbol is repeated N times and the N repeated symbols are transmitted simultaneously using N transmit antennas. Through repetitions, the effect of perforations that the OCHM system experiences is decentralized among the repeated symbols and the full perforation probability is significantly reduced. Each receiver detect the transmitted signal using its pre-assigned code hopping pattern. Simulation results show that the proposed scheme saves the required energy for a given frame error rate (FER).

Performance Comparison of Orthogonal Frequency Division Multiplexing and Single Carrier Transmission with Frequency Domain Equalizer in High Speed Mobile Environment (고속 이동 환경 하에서의 직교주파수분할다중화 및 주파수 영역 등화기를 사용한 단일반송파 시스템의 성능 평가)

  • Seo, Kang-Woon;Yoon, Seok-Hyun;Kim, Baek-Hyun;Kim, Yong-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.9-16
    • /
    • 2011
  • We need to establish standard for the ICT based on train control system. In order to solve the ISI problem, this paper evaluate the performance of OFDM and FDE system. We seem that OFDM system is better than FDE system. In order to solve ISI problem, SC System is needed a equalizer. And another method is OFDM System. If system is used SC with a equalizer, It is better than OFDM in terms of PAPR, but this system is not easy to use Multi-Antenna technique, i.e., beam-forming and MIMO-multiplexing. And If system is used high-order modulation, BER performance is worse than OFDM. If we think about in terms of PAPR problem, considerations are considered not significant because the size of relays is not considered in the communication between trains and ground.

Threshold based User-centric Clustering for Cell-free MIMO Network (셀프리 다중안테나 네트워크를 위한 임계값 기반 사용자 중심 클러스터링)

  • Ryu, Jong Yeol;Lee, Woongsup;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.114-121
    • /
    • 2022
  • In this paper, we consider a user centric clustering in order to guarantee the performance of the users in cell free multiple-input multiple-output (MIMO) network. In the user centric clustering scheme, by using large scale fading coefficients of the connected access points (APs), each user decides own cluster with the APs having the higher the large scale fading coefficients than threshold value compared to the highest large scale fading coefficient. In the determined user centric clusters, the APs design the beamformers and power allocations in the distributed manner and the APs cooperatively transmit data to users by using beamformers and power allocations. In the simulation results, we verify the performance of user centric clustering in terms of the spectral efficiency and we also find the optimal threshold value in the given configuration.

Power Re-Allocation for Low-Performance User in Cell-free MIMO Network (셀프리 다중안테나 네트워크에서 하위 성능 사용자를 위한 전력 재할당 기법)

  • Ryu, Jong Yeol;Ban, Tae-Won;Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1367-1373
    • /
    • 2022
  • In this paper, we consider a power re-allocation technique in order to enhance the frequency efficiency of the low performance user in a cell-free multiple input multiple output (MIMO) network. The AP first allocates transmit power to the user to be proportional to the large-scale fading coefficients of the connected users. Then, the AP reduces the power of the users who were allocated power greater than the threshold ratio of total allocated power to be equal to the threshold ratio of the allocated power. Finally, the AP re-allocates the reduced power from the strong channel user to the user who has the worst channel condition, and thus, the frequency efficiency of the low performance user can be enhanced. In the simulation results, we verify the performance of the power re-allocation technique in terms of the spectral efficiency of the low performance user.

The Optimal Turbo Coded V-BLAST Technique in the Adaptive Modulation System corresponding to each MIMO Scheme (적응 변조 시스템에서 각 MIMO 기법에 따른 최적의 터보 부호화된 V-BLAST 기법)

  • Lee, Kyung-Hwan;Ryoo, Sang-Jin;Choi, Kwang-Wook;You, Cheol-Woo;Hong, Dae-Ki;Kim, Dae-Jin;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.40-47
    • /
    • 2007
  • In this paper, we propose and analyze the Adaptive Modulation System with optimal Turbo Coded V-BLAST(Vertical-Bell-lab Layered Space-Time) technique that adopts the extrinsic information from MAP (Maximum A Posteriori) Decoder with Iterative Decoding as a priori probability in two decoding procedures of V-BLAST; the ordering and the slicing. Also, we consider and compare the Adaptive Modulation System using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme and the Adaptive Modulation System using conventional Turbo Coded V-BLAST technique that is decoded by the ML (Maximum Likelihood) decoding algorithm. We observe a throughput performance and a complexity. As a result of a performance comparison of each system, it has been proved that the complexity of the proposed decoding algorithm is lower than that of the ML decoding algorithm but is higher than that of the conventional V-BLAST decoding algorithm. however, we can see that the proposed system achieves a better throughput performance than the conventional system in the whole SNR (Signal to Noise Ratio) range. And the result shows that the proposed system achieves a throughput performance close to the ML decoded system. Specifically, a simulation shows that the maximum throughput improvement in each MIMO scheme is respectively about 350 kbps, 460 kbps, and 740 kbps compared to the conventional system. It is suggested that the effect of the proposed decoding algorithm accordingly gets higher as the number of system antenna increases.

An Improved Search Space for QRM-MLD Signal Detection for Spatially Multiplexed MIMO Systems (공간다중화 MIMO 시스템의 QRM-MLD 신호검출을 위한 개선된 탐색공간)

  • Hur, Hoon;Woo, Hyun-Myung;Yang, Won-Young;Bahng, Seung-Jae;Park, Youn-Ok;Kim, Jae-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.403-410
    • /
    • 2008
  • In this paper, we propose a variant of the QRM-MLD signal detection method that is used for spatially multiplexed multiple antenna system. The original QRM-MLD signal detection method combines the QR decomposition with the M-algorithm, thereby significantly reduces the prohibitive hardware complexity of the ML signal detection method, still achieving a near ML performance. When the number of transmitter antennas and/or constellation size are increased to achieve higher bit rate, however, its increased complexity makes the hardware implementation challenging. In an effort to overcome this drawback of the original QRM-MLD, a number of variants were proposed. A most strong variant among them, in our opinion, is the ranking method, in which the constellation points are ranked and computation is performed for only highly ranked constellation points, thereby reducing the required complexity. However, the variant using the ranking method experiences a significant performance degradation, when compared with the original QRM-MLD. In this paper, we point out the reasons of the performance degradation, and we propose a novel variant that overcomes the drawbacks. We perform a set of computer simulations to show that the proposed method achieves a near performance of the original QRM-MLD, while its computational complexity is near to that of the QRM-MLD with ranking method.

Performance Evaluation of Octonion Space-Time Coded Physical Layer Security in MIMO Systems (MIMO 시스템에서 옥토니언 시공간 부호를 이용한 물리계층 보안에 대한 성능 분석)

  • Young Ju Kim;BeomGeun Kwak;Seulmin Lim;Cheon Deok Jin
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.145-148
    • /
    • 2023
  • Open-loop Octonion space-time block code for 4 transmit antenna system is considered and random phases are applied to 4 transmit antennas for physical layer security. When an illegal hacker estimates the random phases of 1 through 4 transmit antennas with maximum likelihood (ML), this letter analyzes the bit error rate (BER) performances versus signal-to-noise ratio (SNR). And the Octonion code in the literature[1] does not have full orthogonality so, this letter employs the perfect orthogonal Octonion code. When the hacker knows that the random phases are 2-PSK constellations and he should estimate all the 4 random phases, the hacking is impossible until 100dB. When the hacker possibly know that some of the random phases, bit error rate goes down to 10-3 so, the transmit message could be hacked.

Effect of Multiple Antennas at a Relay Node on the Performance of Physical-Layer Network Coding in Two-Way Relay Channel (양방향 중계채널에서 중계기 다중안테나가 물리계층네트워크 코딩의 성능에 미치는 영향)

  • Park, Jeonghong;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1438-1443
    • /
    • 2016
  • In this paper, we investigate the effect of multiple antennas at a relay node on the performance of physical-layer network coding (PNC) in the two-way relay channel (TWRC). We assume that two source nodes have a single antenna and the relay node has multiple antennas. We extend the conventional TWRC environment with a signle antenna at both relay and source nodes to the case of multiple antennas at the relay node. In particular, we consider two decoding strategies: separate decoding (SD) and direct decoding (DD). The SD decodes each packet from the two sources and performs the network coding with bit-wise exclusive OR (XOR) operation, while the DD decodes the network-coded packet from the two sources. Note that both decoding strategies are based on log-likelihood ratio (LLR) computation. It is shown that the bit error rate (BER) performance becomes significantly improved as the number of antennas at the relay node.

A Transmit Power Control based on Fading Channel Prediction for High-speed Mobile Communication Systems (고속 이동 통신 시스템을 위한 페이딩 예측기반 송신 전력 제어)

  • Hwang, In-Kwan;Lee, Sang-Kook;Ryu, In-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.27-33
    • /
    • 2009
  • This paper proposes transmit power control techniques with fading channel prediction scheme based on recurrent neural network for high-speed mobile communication systems. The operation result of recurrent neural network which is derived interpretively solves complexity problems of neural network circuit, and channel gain of multiple transmit antenna is derived with maximum ratio combining(MRC) by using the operation result, and this channel gain control transmit power of each antenna. simulation results show that proposed method has a outstanding performance compared to method that is not to be controlled power based on channel prediction. Most of legacy studies are for robust receive technique of fading signals or channel prediction of fading signals limited low-speed mobility, but in open loop Power control, proposed channel prediction method decrease system complexity with removal of fading effect in transmitter.