• 제목/요약/키워드: MHD Flow

검색결과 94건 처리시간 0.029초

APPROXIMATE SOLUTIONS TO MHD SQUEEZING FLUID FLOW

  • Islam, S.;Ullah, Murad;Zaman, Gul;Idrees, M.
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1081-1096
    • /
    • 2011
  • In this paper, a steady axisymmetric MHD flow of two dimensional incompressible fluids is studied under the influence of a uniform transverse magnetic field. The governing equations are reduced to nonlinear boundary value problem by applying the integribility conditions. Optimal Homotopy Asymptotic Method (OHAM) is applied to obtain solution of reduced fourth order nonlinear boundary value problem. For comparison, the same problem is also solved by Variational Iteration Method (VIM).

Effect of a chemical reaction on magnetohydrodynamic (MHD) stagnation point flow of Walters-B nanofluid with newtonian heat and mass conditions

  • Qayyum, Sajid;Hayat, Tasawar;Shehzad, Sabir A.;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1636-1644
    • /
    • 2017
  • The main purpose of this article is to describe the magnetohydrodynamic stagnation point flow of Walter-B nanofluid over a stretching sheet. The phenomena of heat and mass transfer are based on the involvement of thermal radiation and chemical reaction. Characteristics of Newtonian heating are given special attention. The Brownian motion and thermophoresis models are introduced in the temperature and concentration expressions. Appropriate variables are implemented for the transformation of partial differential frameworks into sets of ordinary differential equations. Plots for velocity, temperature, and nanoparticle concentration are displayed and analyzed for governing parameters. The skin friction coefficient and local Nusselt and Sherwood numbers are studied using numerical values. The temperature and heat transfer rate are enhanced within the frame of the thermal conjugate parameter.

전자기 전항을 이용한 압전 구동방식 마이크로 펌프의 유동 및 성능 특성에 관한 수치해석적 연구 (A Numerical Study on the Flow and Performance Characteristics of a Piezoelectric Micropump with Electromagnetic Resistance for Electrically Conducting Fluids)

  • 안용준;최청렬;김창녕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2788-2793
    • /
    • 2008
  • A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD(Magnetohydrodynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS(Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studies by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study.

  • PDF

THERMAL DIFFUSION AND RADIATION EFFECTS ON UNSTEADY MHD FREE CONVECTION HEAT AND MASS TRANSFER FLOW PAST A LINEARLY ACCELERATED VERTICAL POROUS PLATE WITH VARIABLE TEMPERATURE AND MASS DIFFUSION

  • Venkateswarlu, M.;Ramana Reddy, G.V.;Lakshmi, D.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권3호
    • /
    • pp.257-268
    • /
    • 2014
  • The objective of the present study is to investigate thermal diffusion and radiation effects on unsteady MHD flow past a linearly accelerated vertical porous plate with variable temperature and also with variable mass diffusion in presence of heat source or sink under the influence of applied transverse magnetic field. The fluid considered here is a gray, absorbing/emitting radiation but a non-scattering medium. At time t > 0, the plate is linearly accelerated with a velocity $u=u_0t$ in its own plane. And at the same time, plate temperature and concentration levels near the plate raised linearly with time t. The dimensionless governing equations involved in the present analysis are solved using the closed analytical method. The velocity, temperature, concentration, skin-friction, the rate or heat transfer and the rate of mass transfer are studied through graphs in terms of different physical parameters like magnetic field parameter (M), radiation parameter (R), Schmidt parameter (Sc), Soret number (So), Heat source parameter (S), Prandtl number (Pr), thermal Grashof number (Gr), mass Grashof number (Gm) and time (t).

MHD 수처리방식에 의한 에멀젼오일폐수의 처리 (Emulsified Oily Wastewater Treatment by MHD Water Treatment Device)

  • 김인수;박승조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.20-27
    • /
    • 1993
  • Emulsified oily wastewater is generally hard to treat in separating oil and water by conventional separators. In this paper the magnetohydrodynamic water treatment device was used to separate oil from emulsified oily wastewater which contained high conductivity. The emulsified oil removal rates and economic ranges of oil separation at various factors were investigated to confirm the influence of the magnetic field in MHD water treatment device according to the characteristics of emulsion brake. Experimental results proved that the oil removal rates were proportional to Lorentz force which depends on the intensity of magnetic field, conductivity and velocity of wastewater.

  • PDF

A Preliminary Study of Patchouli Oil Extraction by Microwave Air-Hydrodistillation Method

  • Kusuma, Heri Septya;Altway, Ali;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.510-513
    • /
    • 2017
  • Patchouli oil extraction in general is still using conventional methods that require a long time of extraction. It is therefore necessary to develop extraction methods to obtain patchouli oil with optimum yield and quality. One of the new methods, which has been successfully developed, is microwave hydrodistillation (MHD). In addition to optimizing the extraction process of patchouli oil, this study also used microwave air-hydrodistillation (MAHD). Based on the research results, extraction using MAHD method can produce higher yield of patchouli oil when compared using MHD method. Also, based on the results of the analysis by GC-MS, extraction using MAHD method can produce quality of patchouli oil that is almost the same when compared using MHD method. This is supported by the results of the analysis by GC-MS, which showed that the content of patchouli alcohol is the main component of patchouli oil, and is almost the same for patchouli oil extracted using MHD method (26.32%) and MAHD method (25.23%).

NON LINEAR VARIABLE VISCOSITY ON MHD MIXED CONVECTION HEAT TRANSFER ALONG HIEMENZ FLOW OVER A THERMALLY STRATIFIED POROUS WEDGE

  • Kandasamy, R.;Hashim, I.;Ruhaila, K.
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.161-176
    • /
    • 2008
  • The effect of variable viscosity on MHD mixed convection Hiemenz flow over a thermally stratified porous wedge plate has been studied in the presence of suction or injection. The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection and has a power-law variation of the wall temperature. An approximate numerical solution for the steady laminar boundary-layer flow over a wall of the wedge in the presence of thermal diffusion has been obtained by solving the governing equations using numerical technique. The fluid is assumed to be viscous and incompressible. Numerical calculations are carried out for different values of dimensionless parameters and an analysis of the results obtained shows that the flow field is influenced appreciably by the magnetic effect, variable viscosity, thermal stratification and suction / injection at wall surface. Effects of these major parameters on the transport behaviors are investigated methodically and typical results are illustrated to reveal the tendency of the solutions. Comparisons with previously published works are performed and excellent agreement between the results is obtained.

  • PDF

자기장이 인가된 영역에서의 층류 충돌제트의 유동특성 변화에 대한 수치적 연구 (Characteristic study of fluid flow of laminar impinging jet in an aligned magnetic field)

  • 이현구;하만영;윤현식;전호환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1845-1850
    • /
    • 2004
  • The laminar impinging jet flow fields were investigated with or without magnetic fields. The transient phenomenon from steady to unsteady flow was founded at specific Reynolds number ranges. In unsteady flow region, the magnetic fields make flow stable. So the characteristics of fluid flow at impingement wall are changed

  • PDF

SORET, HALL CURRENT, ROTATION, CHEMICAL REACTION AND THERMAL RADIATION EFFECTS ON UNSTEADY MHD HEAT AND MASS TRANSFER NATURAL CONVECTION FLOW PAST AN ACCELERATED VERTICAL PLATE

  • VENKATESWARLU, M.;LAKSHMI, D. VENKATA;RAO, K. NAGA MALLESWARA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권3호
    • /
    • pp.203-224
    • /
    • 2016
  • The heat and mass transfer characteristics of the unsteady hydromagnetic natural convection flow with Hall current and Soret effect of an incompressible, viscous, electrically conducting, heat absorbing and optically thin radiating fluid flow past a suddenly started vertical infinite plate through fluid saturated porous medium in a rotating environment are taken into account in this paper. Derivations of exact analytical solutions are aimed under different physical properties. The velocity, concentration and temperature profiles, Sherwood number and Nusselt number are easily examined and discussed via the closed forms obtained. Soret effect and permeability parameter tends to accelerate primary and secondary fluid velocities whereas hall current, radiation and heat absorption have reverse effect on it. Radiation and heat absorption have tendency to enhance rate of heat transfer at the plate. The results obtained here may be further used to verify the validity of obtained numerical solutions for more complicated transient free convection fluid flow problems.