• Title/Summary/Keyword: METAL SURFACE

Search Result 5,306, Processing Time 0.033 seconds

Characterization and annealing effect of tantalum oxide thin film by thermal chemical (열CVD방법으로 증착시킨 탄탈륨 산화박막의 특성평가와 열처리 효과)

  • Nam, Gap-Jin;Park, Sang-Gyu;Lee, Yeong-Baek;Hong, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.42-54
    • /
    • 1995
  • $Ta_2O_5$ thin film IS a promising material for the high dielectrics of ULSI DRAM. In this study, $Ta_2O_5$ thin film was grown on p-type( 100) Si wafer by thermal metal organic chemical vapo deposition ( MCCVD) method and the effect of operating varialbles including substrate temperature( $T_s$), bubbler temperature( $T_ \sigma$), reactor pressure( P ) was investigated in detail. $Ta_2O_5$ thin film were analyzed by SEM, XRD, XPS, FT-IR, AES, TEM and AFM. In addition, the effect of various anneal methods was examined and compared. Anneal methods were furnace annealing( FA) and rapid thermal annealing( RTA) in $N_{2}$ or $O_{2}$ ambients. Growth rate was evidently classified into two different regimes. : (1) surface reaction rate-limited reglme in the range of $T_s$=300 ~ $400 ^{\circ}C$ and (2: mass transport-limited regime in the range of $T_s$=400 ~ $450^{\circ}C$.It was found that the effective activation energies were 18.46kcal/mol and 1.9kcal/mol, respectively. As the bubbler temperature increases, the growth rate became maximum at $T_ \sigma$=$140^{\circ}C$. With increasing pressure, the growth rate became maximum at P=3torr but the refractive index which is close to the bulk value of 2.1 was obtained in the range of 0.1 ~ 1 torr. Good step coverage of 85. 71% was obtained at $T_s$=$400 ^{\circ}C$ and sticking coefficient was 0.06 by comparison with Monte Carlo simulation result. From the results of AES, FT-IR and E M , the degree of SiO, formation at the interface between Si and TazO, was larger in the order of FA-$O_{2}$ > RTA-$O_{2}$, FA-$N_{2}$ > RTA-$N_{2}$. However, the $N_{2}$ ambient annealing resulted in more severe Weficiency in the $Ta_2O_5$ thin film than the TEX>$O_{2}$ ambient.

  • PDF

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Comparison on the Fracture Strength Depending on the Fiber Post and Core Build-up (섬유 강화 포스트와 코어 축성 방법에 따른 파절 강도에 관한 비교)

  • Lee, Ja-Hyoung;Shin, Sooyeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.225-235
    • /
    • 2009
  • A common procedure of restoration of endodonticlly treated tooth with fiber-reinforced post is followed by core build-up after post cementation. However, this technique is complex and time-consuming. The aim of this study was to compare fracture strength of premolar, restored with various methods of core fabrications on fiber-reinforced posts and casting metal restoration. Forty five freshly extracted human mandibular premolars were obtained and devided into 5 groups acconding to the type of post and methods of core build-up. In Group A, D.T. $Light-post^{(R)}$ were cemented with $DUO-LINK^{TM}$ and then $LIGHT-CORE^{TM}$ was used for core restoration. In Group B, D.T. $Light-post^{(R)}$ and $DUO-LINK^{TM}$ were used for cementing in the postspace, and $DUO-LINK^{TM}$ was used again for core restoration. In Group C, $Light-post^{(R)}$ bonding and the core build-up were performed simultaneously by using $DUO-LINK^{TM}$. In Group D, $LuxaPost^{(R)}$ was bonded by using $LuxaCore^{(R)}-Dual$. Again, $LuxaCore^{(R)}-Dual$ was used for core restoration. In Group E, $LuxaPost^{(R)}$ bonding and the core build-up were performed simultaneously by using $LuxaCore^{(R)}-Dual$. Axial reduction was formed parallelly as possible and 45 degree bevel was made at buccal occlusal surface. Crowns were fabricated and cemented. Each tooth was embedded in self-curing acrylic resin to the level of 2mm below the CEJ. Specimens were fixed on universal testing machin such that the axis of the tooth was at 45 degree inclination to the horizontal plane, and compressive force was applied at a crosshead speed of 1mm/min until failure occurred. The mean fracture strength was the highest in group A followed by descending order in group B, D, E and C. However, there were no statistically significant differences between groups with regard to the fracture strength. The type of the post or build-up methods of the core does not seem to influence the fracture strength.

The study on the shear bond strength of resin and porcelain to Titanium (티타늄에 대한 레진과 도재의 결합 강도에 관한 연구)

  • Park, Ji-Man;Kim, Yeong-Soon;Jun, Sul-Gi;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

Determination of Adsorption Isotherms of Hydrogen at an Ir Electrode Interface Using the Phase-Shift Method and Correlation Constants (Ir 전극 계면에서 위상이동 방법 및 상관계수를 이용한 수소의 흡착동온식 결정)

  • Jeon, Sang-K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2007
  • The phase-shift method and correlation constants for studying a linear relationship between the behavior ($-{\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and that (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}\theta{\geq}0$) have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) at noble metal/aqueous electrolyte interfaces. At an Ir/0.1 M KOH aqueous electrolyte interface, the Langmuir and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=3.3{\times}10^{-4}\;mol^{-1}$ for the Langmuir and $K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}$ for the Temkin adsorption isotherm), interaction parameter (g = 4.6 for the Temkin adsorption isotherm), and standard free energies (${\Delta}G_{ads}^0=19.9kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-4}\;mol^{-1}$ and $16.5<{\Delta}G_{\theta}^0<23.3\;kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}\;and\;0.2<\theta<0.8$) of H for the cathodic $H_2$ evolution reaction are determined using the phase-shift method and correlation constants. The inhomogeneous and lateral interaction effects on the adsorption of H are negligible. At the intermediate values of ${\theta},\;i.e,\;0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms (${\theta}\;vs.\;E$) and related electrode kinetic and thermodynamic parameters(K, g, ${\Delta}G_{ads}^0, {\Delta}G_{\theta}^0$).

Geochemistry, Secondary Contamination and Heavy Metal Behavior of Soils and Sediments in the Tohyun Mine Creek, Korea (토현광산 수계에 분포하는 토양과 퇴적물의 지구화학적 특성, 이차적 오염 및 중금속의 거동)

  • 이찬희;이현구;윤경무
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.39-53
    • /
    • 2001
  • Environmental pollution of the Tohyun mine creek area was investigated on the basis of geology, mineralogy and geochemistry. In soils and sediments of the mine area, ${Al_2}{O_3}/{Na_2O}$ and ${K_2}O/{Na_2}O$ ratios are partly negative correlation against ${SiO_2}/{Al_2}{O_3}$, respectively. Geochemical characteristics of some trace and rare earth elements such as V/Ni, Ni/Co, La/Ce, Th/Yb, Th/U, La/Th, ${La_N}/{Yb_N}$, La/Sc and Sc/Th are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. These results suggest that sediments source of the host shale around the mine area could be originated by basic to intermediate igneous rocks. Mineral compositions of soil and sediment near the mine area were partly variable mineralogy, which are composed of quartz, mica, feldspar, chlorite, clay minerals and some pyrite. Soils and sediments with highly concentrated heavy minerals, gravity separated mineralogy, are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various kinds of hydroxide minerals on the polished sections. As normalized by bed rock composition, average enrichment indices of major elements in sediments, precipitates, farmland soils and paddy soils are 1.0, 1.7, 0.9 and 0.8, respectively. Maximum concentration of environmental toxic elements in the mine creek are detected with Ag = 186 ppm, As = 17,100 ppm, Bi = ]27 ppm, Cd = 77 ppm, Cu = 12,299 ppm, Pb = 8,897 ppm, Sb = 1,350 ppm, W = 599 ppm and Zn = 12,250 ppm, which are increasing with total FeO increasing, and extremely high concentrations of surface sediments and precipitates near the waste rock dump. These toxic elements (As, Bi, Cd, Cu, Pb, Sb, W and Zn) of the samples, normalizing by host rock concentration, revealed that average enrichment index is 106.0 for sediments, 279.6 for precipitates, 3.5 for farmland soils and 1.6 for paddy soils. However, on the basis of EPA values, enrichment indices of all the samples are 40.7, 121.4, 1.3 and 0.6, respectively.

  • PDF

The influence of Collar design on peri-implant marginal bone tissue (Collar design이 임플랜트 주위 변연골 흡수에 미치는 영향)

  • Kim, Jee-Hwan;Jung, Moon-Kyou;Moon, Hong-Suk;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.53-64
    • /
    • 2008
  • Statement of problem: Peri-implant marginal bone loss is an important factor that affects the success of implants in esthetics and function. Various efforts have been made to reduce this bone loss by improving implant design and surface texture. Previous studies have shown that early marginal bone loss is affected by implant neck designs. Purpose: The purpose of this study was to examine the influence of laser microtexturing of implant collar on peri-implant marginal bone loss. Materials and methods: Radiographical marginal bone loss was examined in patients treated with implant-supported fixed partial dentures. Marginal bone level was examined with 101 implant fixtures installed in 53 patients at three periods(at the time of implantation, prosthetic treatment and 6-month after loading). Four types of implants were examined. The differences of bone loss between implants(ITI standard) with enough biologic width and implants(ITI esthetic plus, Silhouette IC, Silhouette IC Laser-$Lok^{TM}$) with insufficient biologic width have been compared. Resorption angles were examined at the time of prosthetic delivery and 6-month after loading. Results and Conclusion: Within the limitation of this study, the following results were drawn. 1. The marginal bone loss of ITI standard and Silhouette IC Laser-$Lok^{TM}$ was less than that of ITI esthetic plus and Silhouette IC(P<0.05). The marginal bone loss between ITI standard and Silhouette IC Laser-$Lok^{TM}$ had no significant statistical difference(P>0.05). There was no significant statistical difference between marginal bone loss of ITI esthetic plus and Silhouette IC(P>0.05). 2. There was no significant difference in marginal bone loss between maxilla and mandible(P>0.05). 3. There was no significant difference in resorption angle among four types of implants(P>0.05). The marginal bone of implants with supracrestal collar design of less than that of biologic width had resorbed more than those with sufficient collar length. The roughness and laser microtexturing of implant neck seem to affect these results. If an implant with collar length of biologic width, exposure of fixture is a possible complication especially in the anterior regions of dentition that demand high esthetics. Short smooth neck implant are often recommended in these areas which may lack the distance between microgap and the marginal bone level. In these cases, the preservation of marginal bone must be put into consideration. From the result of this study, it may be concluded that laser microtexturing of implant neck is helpful in the preservation of marginal bone.

Study of Stress Changes in Nanocrystalline CoW Thin/Thick Film Alloys Eletrodeposited from Citrate Baths (Citrate Baths로부터 전기도금된 나노결정립 CoW 합금 박막/후막의 응력변화에 대한 연구)

  • Cho, Ik-Jong;Park, Deok-Yong;Ihn, Hyun-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.141-150
    • /
    • 2006
  • Nanocrystalline CoW thin/thick film alloys were electodeposited from citrate baths to investigate the influences of metal ion concentration, current density and solution pH on chemical composition, current efficiency, residual stress, surface morphology, and microstructure of the film. Deposit W (tungsten) content in CoW thin/thick film increased with increasing W ion concentration, current density, and solution pH in the plating bath. It was observed that residual stress in CoW thin/thick film decreased with increasing W ion concentration and solution pH. CoW thin film exhibited mixed phases of hop Co [(100) and (002)] and hcp $Co_3W$ [(002) and (201)] at W ion concentration with 0.02 to 0.08 M. The microstructure of CoW thin film at W ion concentration of 0.1 to 0.2 M was close to amorphous phase. The dominant phases were found to be hop Co (002) and hop $Co_3W$ [(200), (002) and (201)] at the current densities of 5, 10, 25, and $100mA{\cdot}cm^{-2}$ CoW thin film at the current densities of 50 and $75mA{\cdot}cm^{-2}$ was close to amorphous phase. At solution pH 8.7, CoW thin film exhibited hcp Co (002) and hop $Co_3W$ [(200), (002) and (201)]. Below solution pH 8.7, CoW thin film exhibited amorphous microstructure. The optimum electrodeposition conditions for CoW thin/thick film were found to be W ion concentration of 0.08 M, current density of $10mA{\cdot}cm^{-2}$, and solution pH 8.7.

Limitation of Nitrogen ion Implantation and Ionplating Techniques Applied for Improvement of Wear Resistance of Metallic Implant Materials (금속 임플란트 소재의 내마모성 향상을 위하여 적용되는 질소 이온주입 및 이온도금법의 한계)

  • 김철생
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.157-163
    • /
    • 2004
  • Nitrogen ion implantation and ion plating techniques were applied for improvement of the wear resistance of metallic implant materials. In this work, the wear dissolution behaviour of a nitrogen ion implanted super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) was compared with those of S.S.S, 316L SS and TiN coated 316L SS. The amounts of Cr and Ni ions worn-out from the specimens were Investigated using an electrothermal atomic absorption spectrometry. Furthermore, the Ti(Grade 2) disks were coated with TiN, ZrN and TiCN by use of low temperature arc vapor deposition and the wear resistance of the coating layers was compared with that of titanium. The chemical compositions of the nitrogen ion implanted and nitride coated layers were examined with a scanting auger electron spectroscopy. It wat observed that the metal ions released from the nitrogen ion implanted S.S.S surface were significantly reduced. From the results obtained, it was shown that the nitrogen ion implanted zone obtained with 100 KeV ion energy was easily removed within 200,000 revolutions from a wear dissolution testing under a similar load condition when applied to artificial hip joint. The remarkable improvement in wear resistance weir confirmed by the nitrides coated Ti materials and the wear properties differ greatly according to the chemical composition of the coating layers. for specimens with the same coating thickness of about 3$\mu\textrm{m}$, TiCN coated Ti showed the highest wear resistance. However, after removing the coating layers, the wear rates of all nitrides coated Ti reverted to their normal rates of below 10,000 revolutions from Ti-disk-on-disk wear testing under the same load condition. From the results obtained, it is suggested that the insufficient depth of the 100 Kel N$\^$+/ ion implanted zone and of the nitrides coated layers of 3$\mu\textrm{m}$ are subject to restriction when used as frictional parts of load bearing implants.

Fabrication of Backscatter Electron Cones for Radiation Therapy (산란전자선을 이용한 강내측방조사기구의 제작과 특성)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2001
  • Purpose : Irradiation cones by using backscatter electrons are made for the treatment of superficial small lesions of skin, oral cavity, and rectum where a significant dose gradient and maximum surface dose is desired. Methods and Materials : Backscatter electrons are produced from the primary electron beams from the linear accelerators. The design consists of a cylindrical cone that has a thick circular plate of high atomic number medium (Pb or Cu) attached to the distal end, and the plate can be adjusted the reflected angle. Primary electrons strike the metal plate perpendicularly and produce backscatter electrons that reflect through the lateral hole for treatment. Using film and a parallel plate ion chamber, backscatter electron dose characteristics are measured. Results : The depth dose characteristic of the backscatter electron is very similar to that of the hard x-ray beam that is commonly used for the intracavitary and superficial lesions. The basckscatter electron energy is nearly constant and effectively about 1.5 MeV from the clinical megavoltage beams. The backscatter electron dose rate of $35\~85\;cGy/min$ could be achieved from modern accelerators without any modification. and the depth in water of $50\%$ depth dose from backscatter electron located at 6mm for $45^{\circ}$ angled lead scatter. The beam flatness is dependent on the slit size and the depth of treatment, but is satisfactory to treat small lesions. Conclusions : The measured data for backscatter electron energy, depth dose flatness dose rate and absolute dose indicates that the backscatter electrons are suitable for clinical use.

  • PDF