DOI QR코드

DOI QR Code

The study on the shear bond strength of resin and porcelain to Titanium

티타늄에 대한 레진과 도재의 결합 강도에 관한 연구

  • Park, Ji-Man (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Yeong-Soon (Department of Dental Prosthodontics, School of Medicine, Ewha Womans University) ;
  • Jun, Sul-Gi (Department of Dental Prosthodontics, School of Medicine, Ewha Womans University) ;
  • Park, Eun-Jin (Department of Dental Prosthodontics, School of Medicine, Ewha Womans University)
  • 박지만 (서울대학교 치의학대학원 치과보철과 대학원) ;
  • 김영순 (이화여자대학교 의학전문대학원 대학원) ;
  • 전슬기 (이화여자대학교 의학전문대학원 대학원) ;
  • 박은진 (이화여자대학교 의학전문대학원)
  • Published : 2009.01.30

Abstract

Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

연구목적: 최근 임플란트 상부보철물의 주재료로서 티타늄의 수요가 증가하고 있고, 급속도로 발전하고 있는 CAD/CAM (computer - aided design/computer-aided manufacturing) 기술이 접목되어 티타늄을 절삭하여 제작하는 방법이 주목을 받고 있으며 치과 임상에서 점점 그 영역이 넓어지고 있다. 다만, 하나의 티타늄괴를 절삭하여 만드는 방법의 특성상 기계적 유지력을 얻을 수 있는 비드 등을 형성할 수 없고, 통상적인 재료인 금 합금이나 도재용 합금 주조체에 비해 도재와의 결합력도 떨어지는 것이 보완해야 할 점으로 지적되고 있다. 이에 본 연구는 절삭형 티타늄을 이용한 보철물 제작에 많이 사용되고 있는 열중합 의치상 레진, 간접 복합 레진, 도재와 Grade II 순수 티타늄 사이의 결합 강도를 비교 평가해 보고자 하였다. 연구 재료 및 방법: 지름 9 mm, 높이 10 mm의 Grade II 순수 티타늄 원통형 시편 37개를 3군으로 나누어 각각 직경 7 mm, 높이 1 mm의 열중합 의치상 레진 (Lucitone 199, DENTSPLY Trubyte, York, USA), 간접 복합 레진 (Sinfony, 3M ESPE, Seefeld, Germany), 도재 (Triceram, Dentaurum, Ispringen, Germany)와 결합시켰다. 시편은 $5-55^{\circ}C$에서 1000회 열순환 처리 후, 범용 시험기 (Instron, Universal Testing Machine, Model 4465, USA)를 이용하여 1 mm/min의 속도로 하중을 가하여 전단결합강도를 측정하였다. 파절된 단면의 양상을 관찰하고 각 군별 파절양상을 조사하였다. 측정값은 one-way ANOVA와 Scheffe's multiple range test (${\alpha}=0.05$)로 분석하였다. 결과: 열중합 의치상 레진인 Lucitone 199 ($17.82{\pm}5.13\;MPa$)의 결합 강도가 가장 높았으며, 도재인 Triceram ($12.97{\pm}2.11\;MPa$), 복합레진인 Sinfony ($6.00{\pm}1.31\;MPa$) 순으로 감소하였다. Lucitone 199와 Sinfony 군의 파절 양상은 대부분이 부착성 파절인 데에 반해 Triceram 군에서는 복합성 파절이 많았다. 결론: CAD/CAM을 이용한 절삭형 티타늄 구조물 상방에 전장용 심미 재료로는 열중합형 의치상 레진이 가장 강한 결합 강도를 보인다. 기존의 주조체의 유지구 등에서 얻는 강도에 비해 약하고, 부착성 파절이 많은 점 등은 향후 이들 재료와 티타늄간의 결합력을 높이기 위한 보다 많은 연구가 이루어져야 할 것을 시사한다.

Keywords

References

  1. Taira Y, Yanagida H, Matsumura H, Yoshida K, Atsuta M, Suzuki S. Adhesive bonding of titanium with a thionephosphate dual functional primer and self-curing luting agents. Eur J Oral Sci 2000;108:456-60. https://doi.org/10.1034/j.1600-0722.2000.108005456.x
  2. Kasemo B. Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent 1983;49:832-7. https://doi.org/10.1016/0022-3913(83)90359-1
  3. Reclaru L, Meyer JM. Study of corrosion between a titanium implant and dental alloys. J Dent 1994;22:159-68. https://doi.org/10.1016/0300-5712(94)90200-3
  4. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J 1993;43:245-53.
  5. Cecconi BT, Koeppen RG, Phoenix RD, Cecconi ML. Casting titanium partial denture frameworks: a radiographic evaluation. J Prosthet Dent 2002;87:277-80. https://doi.org/10.1067/mpr.2002.122275
  6. Low D, Sumii T, Swain M. Thermal expansion coefficient of titanium casting. J Oral Rehabil 2001;28:239-42. https://doi.org/10.1111/j.1365-2842.2001.00664.x
  7. Andersson M, Bergman B, Bessing C, Ericson G, Lundquist P, Nilson H. Clinical results with titanium crowns fabricated with machine duplication and spark erosion. Acta Odontol Scand 1989;47:279-86 https://doi.org/10.3109/00016358909007713
  8. Bergman B, Nilson H, Andersson M. A longitudinal clinical study of Procera ceramic-veneered titanium copings. Int J Prosthodont 1999;12:135-9.
  9. Lovgren R, Andersson B, Carlsson GE, Odman P. Prospective clinical 5-year study of ceramic-veneered titanium restorations with the Procera system. J Prosthet Dent 2000;84:514-21. https://doi.org/10.1067/mpr.2000.110137
  10. Bonnard P, Hermans M, Adriaenssens P, Daelemans P, Malevez C. Anterior esthetic rehabilitation on teeth and dental implants optimized with Procera technology: a case report. J Esthet Restor Dent 2001;13:163-71. https://doi.org/10.1111/j.1708-8240.2001.tb00259.x
  11. Ciftci Y, Canay S, Hersek N. Shear bond strength evaluation of different veneering systems on Ni-Cr alloys. J Prosthodont 2007;16:31-6. https://doi.org/10.1111/j.1532-849X.2006.00148.x
  12. Ohkubo C, Watanabe I, Hosoi T, Okabe T. Shear bond strengths of polymethyl methacrylate to cast titanium and cobalt-chromium frameworks using five metal primers. J Prosthet Dent 2000;83:50-7. https://doi.org/10.1016/S0022-3913(00)70088-6
  13. Yoshida K, Kamada K, Taira Y, Atsuta M. Effect of three adhesive primers on the bond strengths of four light-activated opaque resins to noble alloy. J Oral Rehabil 2001;28:168-73. https://doi.org/10.1046/j.1365-2842.2001.00662.x
  14. Matsumura H, Yanagida H, Tanoue N, Atsuta M, Shimoe S. Shear bond strength of resin composite veneering material to gold alloy with varying metal surface preparations. J Prosthet Dent 2001;86:315-9. https://doi.org/10.1067/mpr.2001.114823
  15. Park SY, Jeon YC, Jeong CM. Comparison of the bond strength of ceramics fused to titanium and Ni-Cr alloy. J Korean Acad Prosthodont 2003;41:89-98.
  16. Adachi M, Mackert JR Jr, Parry EE, Fairhurst CW. Oxide adherence and porcelain bonding to titanium and Ti-6Al- 4V alloy. J Dent Res 1990;69:1230-5. https://doi.org/10.1177/00220345900690060101
  17. Kimura H, Horng CJ, Okazaki M, Takahashi J. Oxidation effects on porcelain-titanium interface reactions and bond strength. Dent Mater J 1990;9:91-9. https://doi.org/10.4012/dmj.9.91
  18. Doerr CL, Hilton TJ, Hermesch CB. Effect of thermocycling on the microleakage of conventional and resin-modified glass ionomers. Am J Dent 1996;9:19-21.
  19. Kim JY, Pfeiffer P, Niedermeier W. Effect of laboratory procedures and thermocycling on the shear bond strength of resin-metal bonding systems. J Prosthet Dent 2003;90:184-9. https://doi.org/10.1016/S0022-3913(03)00261-0