Comparison on the Fracture Strength Depending on the Fiber Post and Core Build-up

섬유 강화 포스트와 코어 축성 방법에 따른 파절 강도에 관한 비교

  • Lee, Ja-Hyoung (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Shin, Sooyeon (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 이자형 (단국대학교 치과대학 보철학 교실) ;
  • 신수연 (단국대학교 치과대학 보철학 교실)
  • Received : 2009.07.12
  • Accepted : 2009.09.25
  • Published : 2009.09.30

Abstract

A common procedure of restoration of endodonticlly treated tooth with fiber-reinforced post is followed by core build-up after post cementation. However, this technique is complex and time-consuming. The aim of this study was to compare fracture strength of premolar, restored with various methods of core fabrications on fiber-reinforced posts and casting metal restoration. Forty five freshly extracted human mandibular premolars were obtained and devided into 5 groups acconding to the type of post and methods of core build-up. In Group A, D.T. $Light-post^{(R)}$ were cemented with $DUO-LINK^{TM}$ and then $LIGHT-CORE^{TM}$ was used for core restoration. In Group B, D.T. $Light-post^{(R)}$ and $DUO-LINK^{TM}$ were used for cementing in the postspace, and $DUO-LINK^{TM}$ was used again for core restoration. In Group C, $Light-post^{(R)}$ bonding and the core build-up were performed simultaneously by using $DUO-LINK^{TM}$. In Group D, $LuxaPost^{(R)}$ was bonded by using $LuxaCore^{(R)}-Dual$. Again, $LuxaCore^{(R)}-Dual$ was used for core restoration. In Group E, $LuxaPost^{(R)}$ bonding and the core build-up were performed simultaneously by using $LuxaCore^{(R)}-Dual$. Axial reduction was formed parallelly as possible and 45 degree bevel was made at buccal occlusal surface. Crowns were fabricated and cemented. Each tooth was embedded in self-curing acrylic resin to the level of 2mm below the CEJ. Specimens were fixed on universal testing machin such that the axis of the tooth was at 45 degree inclination to the horizontal plane, and compressive force was applied at a crosshead speed of 1mm/min until failure occurred. The mean fracture strength was the highest in group A followed by descending order in group B, D, E and C. However, there were no statistically significant differences between groups with regard to the fracture strength. The type of the post or build-up methods of the core does not seem to influence the fracture strength.

최근 심미 치과 수복이 발달하게 되면서 치은 연상 변연을 가진 전부 도재 수복물을 하게 되는 경우 섬유 강화 포스트는 자연치와 유사한 반투명성을 보여 더욱 심미적으로 보이게 해준다. 섬유 강화 포스트인 석영 섬유 포스트와 유리 섬유 포스트로 수복시 코어 축성 방법을 달리한 5가지 군으로 분류하여 각 방법에 따른 파절강도를 비교하였다. 발치된 45개의 치아를 사용하여 모두 근관치료를 시행하고 CEJ 상방 1mm 부위에서 치축에 수직이 되도록 주수하에 치관부를 절삭하였다. A, B, C군은 #1 D.T. $Light-post^{(R)}$를 사용하였고, D, E군은 #1.5 $LuxaPost^{(R)}$를 사용하였다. A군은 제조사의 지시대로 D.T. $Light-post^{(R)}$와 시멘트로는 $DUO-LINK^{TM}$을 코어로는 $LIGHT-CORE^{TM}$을 사용하였다. B군은 시멘트와 코어로 $DUO-LINK^{TM}$을 포스트 접착 후 코어를 축성하는 이 단계 방법을 사용하였고, C군은 시멘트와 코어로 $DUO-LINK^{TM}$를 사용하면서 포스트 접착과 코어 축성을 동시에 시행하는 일단계 방법을 사용하였다. D군은 시멘트와 코어로 $LuxaCore^{(R)}-Dual$을 이단계 방법으로 축성하고, E군은 일단계 방법으로 축성하였다. ferrule 0mm로 치관을 삭제하여 금속관으로 수복 후 $45^{\circ}$로 기울여 CEJ 하방 2mm 까지 매몰 후 crosshead speed 1mm/min로 파절 강도를 측정하였다. 파절강도는 A, B, D, E, C군 순으로 작은 값을 나타냈으며 통계적 유의성은 없었다. B군에서만 치근 파절이 나타났으며 모두 재수복이 불가능한 파절이었다. 파절 양상은 모든 군에서 코어/치근 파절이 절반 이상 나타났으며, B와 D군에서는 대부분 재수복이 불가능한 파절이었다. 실험에서 나타난 결과로 미루어 섬유 강화 포스트나 코어의 종류 그리고 코어 축성 방법이 치아 파절 강도와는 큰 연관성이 없는 것으로 보인다. 파절 양상을 보면 섬유 강화 포스트를 사용했음에도 불구하고 재수복이 불가능한 경우가 절반 이상 나타났으며, 이단계 방법으로 코어를 축성한 군에서 그 수가 더 많은 것으로 보아 일단계 방법으로 코어를 축성하는 것이 재수복의 가능성을 고려해 볼 때 임상적으로 사용 가능한 효율적인 방법이라고 사료된다.

Keywords

Acknowledgement

Supported by : 단국대학교

References

  1. Sorensen JA, Engelman MJ. Effect of post adaptation on fracture resistance of endodontically treated teeth. J Prosthet Dent 1990;64:419-24 https://doi.org/10.1016/0022-3913(90)90037-D
  2. Akkayan B, Gulmez T. Resistance to fracture of endodontically treated teeth restored with different post systems. J Prosthet Dent 2002; 87:431-7 https://doi.org/10.1067/mpr.2002.123227
  3. Hu YH, Pang LC, Hsu CC, Lau YH. Fracture resistance of endodontically treated anterior teeth restored with four post-and-core systems. Quintessence Int 2003;34:349-53
  4. Stockton LW. Factors affecting retention of post systems: a literature review. J Prosthet Dent 1999;81;380-5 https://doi.org/10.1016/S0022-3913(99)80002-X
  5. Nergiz I, Schmage P, Ozcan M, Platzer U. Effect of length and diameter of tapered posts on the retention. J Oral Rehabil 2002;29;28-34 https://doi.org/10.1046/j.1365-2842.2002.00806.x
  6. Tay FR, Loushine RJ, Lambrecht P, Weller RN, Pashley DH. Geometric factors affecting dentin bonding in root canals: a theoretical modeling approach. J Endod 2005;31;584-9 https://doi.org/10.1097/01.don.0000168891.23486.de
  7. Lui JL. Composite resin reinforcement of flared canals using light-transmitting plastic posts. Quintessence Int 1994;25:313-9
  8. Ferrari M, Vichi A, Grandini S. Efficacy of different adhesive techniques on bonding to root walls: an SEM investigation. Dent Mater 2001;17:422-9 https://doi.org/10.1016/S0109-5641(00)00102-0
  9. Assif D, Gorfil C. Biomechanical considerations in restoring endodontically treated teeth. J Prosthet Dent 1994;71;565-7 https://doi.org/10.1016/0022-3913(94)90438-3
  10. Mannocci F, Ferrary M, Waston TF. Intermittent loading of teeth restored using quartz fiber, carbon-quartz fiber, and zirconium dioxide ceramic root canal posts. J Adhes Dent 1999;1:153-8
  11. Mannocci F, Qualtrough AJ, Worthington HV, Watson TF, Pitt Ford TR. Randomized clinical comparison of endodontically treated teeth restored with amalgam or with fiber posts and resin composite: Five-year results2005; 30(1):9-15
  12. Malferrari S, Monaco C, Scotti R. Clinical evaluation of teeth restored with quartz fiber-reinforced epoxy resin posts. Int J Prosthodont 2003;16:39-44
  13. Shim DW, Shim JS, Lee KW. The fracture characteristics of glass fiber post and core on using different types of core resin materials. Korean J Clinical Dentistry 2004;3:66-7
  14. Cohen S, Burns RC. Pathway of the pulp, 6ed. St Louis 1994; 604-32
  15. Guzy GE, Nicholls JI. In vitro comparison of intact endodontically treated teeth with and without endo-post reinforcement. J Prosthet Dent 1979;42: 39-44 https://doi.org/10.1016/0022-3913(79)90328-7
  16. Johnson JK, Sakumura JS. Dowel form and tensile force. J Prosthet Dent 1978;40:645-9 https://doi.org/10.1016/0022-3913(78)90063-X
  17. Peters MC, Poort HW, Farah JW, Craig RG. Stress analysis of a tooth restored with a post and core. J Dent Res 1983;62:760-3 https://doi.org/10.1177/00220345830620061501
  18. Kovarik RE, Breeding LC, Caughman WF. Fatigue life of three core materials under simulated chewing conditions. J Prosthet Dent 1992;68:584-90 https://doi.org/10.1016/0022-3913(92)90370-P
  19. Asmussen E, Peutzfeldt A, Heitmann T. Stiffness, elastic limit, and strength of newer types of endodontic posts. J Dent 1999:27:275-8 https://doi.org/10.1016/S0300-5712(98)00066-9
  20. Dietschi D, Romelli M, Goretti A. Adaptation of adhesive posts and cores to dentin after fatigue testing. Int J Prosthodont 1997;10:498-507
  21. Nash RW. The use of posts for endodontically treated teeth. Compend contin Educ Dent 1998;19:1054-62
  22. Ahmad I. Zirconium oxide post and core system for the restoration of an endodontically treated incisor. Pract Periodontics Aesthet Dent 1999;11:197-204
  23. Yaman P, Thorsteinsson TS. Effect of core materials on stress distribution of posts. J Prosthet Dent 1992;68:416-20 https://doi.org/10.1016/0022-3913(92)90403-W
  24. Tan PLB, Aquilino SA, Gratton DG, Stanford CM, Tan SC, Johnson WT, Dawson D. In vitro fracture resistance of endodontically treated central incisors with varying ferrule heights and configurations. J Prosthet Dent 2005;93(4):331-6 https://doi.org/10.1016/j.prosdent.2005.01.013
  25. Mezzomo E, Massa F, Libera SD. Fracture resistance of teeth restored with two different post-and-core designs cemented with two different cements: An in vitro study Part I. Quintessence Int 2003;34(4):301-6
  26. Goto Y, Nicholls JI, Phillips KM, Junge T. Fatigue resistance of endodontically-treated teeth restored with three dowel-and-core systems. J Prosthet Dent 2005;93(1):45-50 https://doi.org/10.1016/j.prosdent.2004.09.026
  27. Barjau-Escribano A, Sancho-Bru JL, Forner-Navarro L, Rodriquez-Cervantes PJ, Pérez-González A, Sánchez-Marín FT. Influence of prefabricated post material on restored teeth: Fracture strength and stress distribution. Oper Dent 2006;31(1):47-54 https://doi.org/10.2341/04-169
  28. Pereira JR, de Ornelas F, Conti PC, do Valle AL. Effect of a crown ferrule on the fracture resistance of endodontically treated teeth restored with prefabricated posts. J Prosthet Dent 2006; 95(1):50-4 https://doi.org/10.1016/j.prosdent.2005.10.019
  29. Akkayan B. An in vitro study evaluating the effect of ferrule length on fracture resistance of endodontically treated teeth restored with fiber-reinforced and zirconia dowel systems. J Prosthet Dent 2004;92(2): 155-62 https://doi.org/10.1016/j.prosdent.2004.04.027
  30. Freeman MA, Nicholls JI, Kydd WL, Harrington GW. Leakage associated with load fatigue-induced preliminary failure of full crowns placed over three different post and core systems. J Endod 1998;24: 26-32 https://doi.org/10.1016/S0099-2399(98)80208-2
  31. Lyons MF, Baxendale RH. A preliminary electromyography study of bite force and jaw-closing muscle fatigue in human subjects with advanced tooth wear. J Oral Rehabil 1990;17:311-8 https://doi.org/10.1111/j.1365-2842.1990.tb00014.x
  32. Oliva RA, Lowe JA. Dimensional stability of composite used as a core material. J Prosthet Dent 1986;56:554 https://doi.org/10.1016/0022-3913(86)90421-X
  33. Larson TD, Jensen JR. Microleakage of composite resin and amalgam core material under complete cast crowns. J Prosthet Dent 1980;44:40 https://doi.org/10.1016/0022-3913(80)90044-X