Limitation of Nitrogen ion Implantation and Ionplating Techniques Applied for Improvement of Wear Resistance of Metallic Implant Materials

금속 임플란트 소재의 내마모성 향상을 위하여 적용되는 질소 이온주입 및 이온도금법의 한계

  • 김철생 (전북대학교 대학원 바이오나노시스템공학과)
  • Published : 2004.04.01

Abstract

Nitrogen ion implantation and ion plating techniques were applied for improvement of the wear resistance of metallic implant materials. In this work, the wear dissolution behaviour of a nitrogen ion implanted super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) was compared with those of S.S.S, 316L SS and TiN coated 316L SS. The amounts of Cr and Ni ions worn-out from the specimens were Investigated using an electrothermal atomic absorption spectrometry. Furthermore, the Ti(Grade 2) disks were coated with TiN, ZrN and TiCN by use of low temperature arc vapor deposition and the wear resistance of the coating layers was compared with that of titanium. The chemical compositions of the nitrogen ion implanted and nitride coated layers were examined with a scanting auger electron spectroscopy. It wat observed that the metal ions released from the nitrogen ion implanted S.S.S surface were significantly reduced. From the results obtained, it was shown that the nitrogen ion implanted zone obtained with 100 KeV ion energy was easily removed within 200,000 revolutions from a wear dissolution testing under a similar load condition when applied to artificial hip joint. The remarkable improvement in wear resistance weir confirmed by the nitrides coated Ti materials and the wear properties differ greatly according to the chemical composition of the coating layers. for specimens with the same coating thickness of about 3$\mu\textrm{m}$, TiCN coated Ti showed the highest wear resistance. However, after removing the coating layers, the wear rates of all nitrides coated Ti reverted to their normal rates of below 10,000 revolutions from Ti-disk-on-disk wear testing under the same load condition. From the results obtained, it is suggested that the insufficient depth of the 100 Kel N$\^$+/ ion implanted zone and of the nitrides coated layers of 3$\mu\textrm{m}$ are subject to restriction when used as frictional parts of load bearing implants.

금속 임플란트 재료들의 마모저항을 향상시키기 위하여 질소 이온주입 및 이온도금 기술을 적용하였다. 질소 이온주입 된 초내식성 스테인리스강(S.S.S)의 마모이온용출 특성을 S.S.S, 316L SS, TiN코팅된 316S SS와 비교 평가하기 위하여 탄소로 원자흡수분광분석기를 이용하여 시편들로부터 마모용출된 Cr과 Ni 이온량을 측정하였다. 또한, 저온아크증착법을 이용하여 TiN, ZrN, TiCN코팅된 Ti(Grade 2)원반의 마모저항을 비교하였고, 질소이온주입 및 질화물 코팅된 표면충의 화학적 조성은 SAES(scanning Auger electron spectroscopy)를 이용하여 분석하였다. 질소 이온주입된 S.S.S 표면으로부터 마모에 의하여 용출된 Cr과 Ni 이온량은 표면처리하지 않은 스테인리스강들에 비하여 크게 감소하였다 그러나 인공고관절에 걸리는 하중조건 하에서 실행된 마모이온용출실험에서 이온에너지 100 KeV로 질소이온 주입된 표면층은 20만회 내에서 쉽게 제거되었다. 질화물 코팅된 Ti 시편들의 마모저항도 크게 향상되었고, 그 마모특성은 코팅층의 화학적 조성에 따라 크게 차이가 났다. 코팅두께 3Um의 코팅시편들 중 TiCN 코팅된 티타늄이 가장 높은 내마모 특성을 보였으나 같은 하중조건 하에서 disk(Ti)-on-disk 마모실험에서 그 질화물 코팅면들의 마모 무게감 소비는 1만회 아래에서 모두 Ti의 마모비와 유사하게 전환되었다. 본 실험으로부터 얻어진 연구결과에 의하면, 100 KeV 질소이온주입 및 두께 3$\mu\textrm{m}$의 길화코팅된 표면층의 경우 표면 경화충의 깊이가 충분치 않아 높은 하중을 받는 임플란트의 마찰부위에 사용하기에는 한계가 있음을 보였다.

Keywords

References

  1. Solid State & Materials Science no.3 Biological surface science B. Kasemo
  2. Biomaterials v.22 Immobilization of bisphosphonates on surface modified titanium M. Yoshinari;Y. Oda;H. Ueki;S. Yokose https://doi.org/10.1016/S0142-9612(00)00234-9
  3. Biomaterials v.13 Bone tissue ingrowth enhancement by calcium phosphate coatings on porous titanium alloys: the effect of shielding metal dissolution product P. Ducheyne;P.D. Bianco;C.S. Kim https://doi.org/10.1016/0142-9612(92)90030-R
  4. Material Science and Engineering C v.23 Interface characteristics changed by heat treatment of Ti materials with hydroxyapatite K.E. Hwang;C.S. Kim https://doi.org/10.1016/S0928-4931(02)00311-9
  5. Material Science and Engineering C v.2 Quantitative analysis by EQCN of alkanethiol absorbed on modified titanium surfaces K. Shin;C.S. Kim
  6. J. Biomed. Mat. Res. v.49 no.3 Systemic metal-protein binding associated with total joint replacement arthroplasty N.J. Hallab;J.J. Jacobs;A. Skipor;K. Mikecz;J.O. Galante https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<353::AID-JBM8>3.0.CO;2-T
  7. J. Biomed. Mat. Res. v.18 Correlation of tissue reaction to corrosion in osteosyntic devices H.G. French;S.D. Cook;R.J. Haddad, Jr. https://doi.org/10.1002/jbm.820180712
  8. Biomaterials v.2 The response to the intramuscular implantation of pure metals A. McNamara;D.F. Willians https://doi.org/10.1016/0142-9612(81)90085-5
  9. Biomaterials v.10 Nickel, chromium, cobalt dental alloys allergic reactions: an overview H.F. Hildebrand;C. Veron;P. Martin https://doi.org/10.1016/0142-9612(89)90060-4
  10. The American J. of Surgery v.139 Metal allergy and the surgical patient M.B. Mayor;K. Merrit;S.A. Brown
  11. J. Orthopaed. Res. v.7 Cobalt, chromium, and nickel concentrations in body fluids patients with porous-coated knee or hip prostheses F.W. Sunderman Jr.;S.M. Hopfer;I. Swift;W.N. Rezuke;L. Zubka;P. Highman;B. Edwards;M. Folcik;H.R. Gossling https://doi.org/10.1002/jor.1100070302
  12. J. Biomed. Mater. Res. v.31 Local accumulation of titanium released from a titanium implants in the absence of wear P. D. Bianco;P. Ducheyne;J.M. Cuckler https://doi.org/10.1002/(SICI)1097-4636(199606)31:2<227::AID-JBM9>3.0.CO;2-P
  13. J. Biomed. Mater. Res.:Applied Biomaerials v.23 Inhibition of apatite formation by titanium and vanadium ions C. Norman https://doi.org/10.1002/jbm.820231305
  14. J. Prosthet. Dent. v.49 Biocompatibility of titanium implants surface science aspects B. Kasemo https://doi.org/10.1016/0022-3913(83)90359-1
  15. Titanium : A technical guide Corrosion resistance M.J. Donachie, Jr.
  16. Titanium in medicine D.F. Williams;D.M. Brunette(ed.);P. Tengvall(ed.);M. Textor(ed.);P. Thomsen(ed.)
  17. J. Biomed. Mater. Res. v.4 Passive dissolution kinetics of titanium in vitro K.E. Healy;P. Ducheyne
  18. Bulletin of the KIEEME v.14 no.3 Bioceramics for hard tissue replacements C.S. Kim;M.J. Song
  19. Biomaterials v.12 no.5 Compositional variations in the surface and interface of calcium phosphate ceramic coatings on Ti and Ti-6Al-4V due to sintering and immersion C.S. Kim;P. Ducheyne https://doi.org/10.1016/0142-9612(91)90143-X
  20. J. Biomed. Eng. Res. v.11 no.1 Bioactivity of calcium phosphate ceramic coatings on metallic implants C.S. Kim;P. Ducheyne
  21. J. of Materials science: Materials in Medicine v.7 Biocompatibility and mechanical properties of low temperature deposited quanternary(Ti,Al,V)N coatings on Ti6Al4V titanium alloy substrates D.M. Grant https://doi.org/10.1007/BF00122181
  22. Nuclear Instruments and Methods v.182;183 Modification of metallic corrosion by ion implantation C.R. Clayton
  23. Surf. Coat. Technol. v.65 Coating on the cutting edge of an electric shaver by ion beam assisted deposition T. Miyano;H. Kitamura https://doi.org/10.1016/S0257-8972(94)80028-6
  24. Vacuum v.37 Recent trends in surface treatment using ion beam process J.C. Collision https://doi.org/10.1016/0042-207X(87)90080-7
  25. Surf. Eng. v.2 Ion Implantation and Ion assisted coating for Wear Resistance in Metal G. Dearnaley
  26. Surf. Coat. Technol. v.88 Research on the fatigue behavior of thianium based biomaterial coated with titanium nitride film by beam enhanced deposition N. Huang;Y. Chen;G. Cai;Z. Wang;G. Yiao;X. Liu
  27. Surf. Coat. Technol. v.71 Interface strength of titanium nitride coatings on hardened high-speed steel B. Rother;T. Lunow;G. Leonhardt https://doi.org/10.1016/0257-8972(94)02317-J
  28. Biomaterials Research v.3 no.1 Hydroxyapatite coated super stainless steel(S 32050) implants for Biomedical applications G.T. Oh;C.S. Kim;G. Khang;Y.S. Park
  29. Annual Book of ASTM standards Standard practice for surface preparation and marking of metallic implant materials
  30. J. Biomed. Bater. Res. v.21 The detemination of Al, Cr, Co, Fe, and Ni in whole blood by electrothermal atomic absorption spectroscopy S. Lugowski https://doi.org/10.1002/jbm.820210510
  31. Inetrim Report Effects of N, Mo, Ni and Mn on the pitting resistnace of stainless steels Y.S. Park
  32. J. Biomed. Eng. Res. v.17 no.1 In-vitro metal ion release behaviour and cytotoxicity of a super stainless steel C.S. Kim;J.S. Park;E. Her;G. Khang
  33. J. of Corrosion v.18 The effect of nitrogen addition on the pasivity of stainless steel Y.S. Kim;Y.S. Park