• 제목/요약/키워드: MEMS resonator

검색결과 44건 처리시간 0.025초

New Classes of LC Resonators for Magnetic Sensor Device Using a Glass-Coated Amorphous CO83.2B3.3Si5.9Mn7.6 Microwire

  • Kim, Yong-Seok;Yu, Seong-Cho;Hwang, Myung-Joo;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.122-127
    • /
    • 2005
  • New classes of LC resonators for micro magnetic sensor device were proposed and fabricated. The first type LC resonator (Type I) consists of a small piece of microwire and two cylindrical electrodes at the end of the microwire without direct contact to its ferromagnetic core. In type I resonator the ferromagnetic core of the microwire and cylindrical electrodes act as an inductor and two capacitors respectively to form a LC circuit. The second type LC resonator (Type II) consists of a solenoidal micro-inductor with a bundle of soft magnetic microwires as a core. The solenoidal micro-inductors fabricated by MEMS technique were $500\sim1,000\;\mu{m}$ in length with $10\sim20$ turns. A capacitor is connected in parallel to the micro-inductor to form a LC circuit. A tiny glass coated $CO_{83.2}B_{3.3}Si_{5.9}Mn_{7.6}$ microwire was fabricated by a glass-coated melt spinning technique. A supergiant magneto-impedance effect was found in a type I resonator as much as 400,000% by precise tuning frequency at around 518.51 MHz. In type II resonator the changes of inductance as a function of external magnetic field in micro-inductors with properly annealed microwire cores were varied as much as 370%. The phase angle between current and voltage was also strongly dependent on the magnetic field. The drastic increments of magnetoimpedance at near the resonance frequency were observed in both types of LC resonators. Accordingly, the sudden change of the phase angle, as large as $180^{\circ}C$, evidenced the occurrence of the resonance at a given external magnetic field.

A GaAs Micromachined Millimeter-wave Lowpass Filter Using Microstrip Stepped-Impedance Hairpin Resonator

  • Cho Ju-Hyun;Yun Tae-Soon;Baek Tae-Jong;Ko Baek-Seok;Shin Dong-Hoon;Lee Jong-Chul
    • 한국ITS학회 논문지
    • /
    • 제3권2호
    • /
    • pp.85-93
    • /
    • 2004
  • In this paper, microstrip stepped-impedance hairpin resonator (SIR) lowpass filter f.PF) by surface rnicromachining on GaAs substrate is sugsested. This filter has the advantages of compact side, easy fabrication, and sharp cutoff frequency response. The new SIR LPF shows the 3 dB passband of dc to 33 GHz, the insertion loss of 0.82 dB, and the return loss of better than 17 dB up to 25.57 GHz. This filter is useful for many microwave system applications.

  • PDF

밴드패스필터 구현을 위한 압전박막공진기 제작 (Film Bulk Acoustic Wave Resonator for Bandpass Filter)

  • 김인태;박윤권;이시형;이윤희;이전국;김남수;주병권
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권12호
    • /
    • pp.597-600
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size and low cost, high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible suspended FBAR using surface micromachining. Membrane is composed $Si_3N_4SiO_2Si _3N_4$ multi layer and air gap is about 50${\mu}{\textrm}{m}$. Firstly, We perform one dimensional simulation applying transmission line theorem to verify resonance characteristic of the FBAR. Process of the FBAR is used MEMS technology. Fabricated FBAR resonate at 2.4GHz, $K^2_{eff}$ and Q are 4.1% and 1100.

공진주파수 분석을 통한 MEMS용 Si 소재의 기계적 물성 및 미세파손 분석 기법 (Characterization of the mechanical and micro-fracture properties of material for ME the resonance frequency)

  • 김재석;이세호;권동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.575-577
    • /
    • 2000
  • (100) single crystal Si은 좋은 anisotropy etching 성질과 기계적 강도를 가지고 있어 MEMS 구조용 소재로 사용되고 있다. (100) Si의 신뢰성 평가를 위하여 필요한 탄성계수를 측정하고 반복동작에 의한 응력에 의한 파손특성을 평가하기 위하여 micromachining을 통해 resonator를 제작하였다. Resonator의 공진주파수를 분석함으로써 탄성계수를 추하고자 하였으며 반복응력에 대한 파괴특성을 평가하기 위하여 공진 상태에서 파괴가 일어날 때까지의 사이를 수를 측정함으로써 반복음력에 대한 Si의 피로특성을 평가하고자 하였다. 실험 결과 (100) Si의 <110> 방향으로의 탄성 개수를 측정할 수 있었으며 Si의 미세파손의 응력에 대한 의존성을 평가할 수 있었다. 평가결과 Si의 미세파손 메커니즘은 억제된 균열의 진전에 의한 subcritical crack에 의한 피로파괴 현상보다는 과도한 스트레스에 의한 순간적인 균열전파에 의해 지배됨을 관찰할 수 있었다.

  • PDF

Flexible 마이크로시스템을 위한 압전 박막 공진기의 설계 및 제작 (Design and fabrication of film Bulk Acoustic Resonator for flexible Microsystems)

  • 강유리;김용국;김수원;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1224-1231
    • /
    • 2003
  • This paper reports on the air-gap type thin film bulk acoustic wave resonator(FBAR) using ultra thin wafer with thickness of 50$\mu\textrm{m}$. It was fabricated to realize a small size devices and integrated objects using MEMS technology for flexible microsystems. To reduce a error of experiment, MATLAB simulation was executed using material characteristic coefficient. Fabricated thin FBAR consisted of piezoelectric film sandwiched between metal electrodes. Used piezoelectric film was the aluminum nitride(AlN) and electrode was the molybdenum(Mo). Thin wafer was fabricated by wet etching and dry etching, and then handling wafer was used to prevent damage of FBAR. The series resonance frequency and the parallel frequency measured were 2.447㎓ and 2.487㎓, respectively. Active area is 100${\times}$100$\mu\textrm{m}$$^2$.Q-factor was 996.68 and K$^2$$\_$eff/ was 3.91%.

ZnO압전박막을 이용한 FBAR에 대한 연구 (The Study of membrane structure for FBAR and the deposition of ZnO piezoelectric thin film)

  • 임석진;김종성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.358-361
    • /
    • 2002
  • 체적파 박막형 공진기 (FBAR: Film Bulk Acoustic wave Resonator)소자를 제조하여, 박막의 c축 우선 배향성을 조절하는 것이 FBAR 소자 특성을 확인하였다. 본 연구에서는 MEMS 공정에 의해 Membrane 구조의 FBAR(Film Bulk Acoustic wave Resonator) 소자를 구현하고자 하였다. 이를 위해 Si 기판을 Back-etching 하여 membrane 구조를 제작하였고 압전층으로 ZnO을 Sputtering 공정에 의해 증착 후, 공정 조건에 따른 우선 배향성을 관찰하였다.

  • PDF

표면탄성파를 이용한 자이로스코프 개발 (Development of a SAW based Gyroscope)

  • 오해관;윤성진;이기근;왕웬;양상식
    • 한국군사과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.106-113
    • /
    • 2009
  • This paper presents a surface acoustic wave(SAW) micro-electro-mechanical-systems(MEMS) interdigital transducer (IDT) gyroscope with 80MHz central frequency on a $128^{\circ}\;YX\;LiNbO_3$, which is consisted of a two-port SAW resonator, metallic dots and dual delay lines for the sensor and reference oscillators. Reason for using two delay line oscillators is to extract the gyroscope effect by comparing the resonant frequencies between two oscillators and to compensate the temperature effect. Based on the coupling of modes(COM) simulation, an 80MHz two ports SAW resonator and dual delay line were fabricated and characterized by the network analyzer. Obtained sensitivity was $109Hz/deg{\cdot}s^{-1}$ in the angular rate range of $0{\sim}1000deg/s$. Good Linearity and superior directivity were observed.

Flexible Engineering Tool for Radiofrequency Parameter Identification of RF-MEMS BAW Filters

  • Mabrouk, Mohamed;Boujemaa, Mohamed-Ali;Choubani, Fethi
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.988-995
    • /
    • 2016
  • In this paper, we present a new specific and customized interface tool with parameter identification of Modified Butterworth-Van Dyke models for ladder bulk acoustic wave filters. The aforementioned tool is easy to use and flexible because it allows simulations and reengineering to be conducted in an application. A modular design approach is applied to simplify the extension of the proposed tool for different topologies. The proposed tool was validated using measurements from an aluminum-nitride based ladder BAW filter dedicated to the frequency ranges of the Universal Mobile Telecommunications Service and standards and Wideband Code Division Multiple Access.

마이크로 공진 구조체 제작을 위한 다층 폴리실리콘의 스트레스 특성 (Stress characteristics of multilayer polysilicon for the fabrication of micro resonators)

  • 최창억;이창승;장원익;홍윤식;이종현;손병기
    • 센서학회지
    • /
    • 제8권1호
    • /
    • pp.53-62
    • /
    • 1999
  • MEMS(Microelectromechanical System) 기술분야에서 폭넓게 사용하고 있는 폴리실리콘 박막을 이용하여 폴리실리콘 미소 공진 구조체를 제작하였다. 폴리실리콘 증착은 저압기상화학증착 장비를 사용하여 대칭적 두께로 박막을 적층하였고 폴리실리콘의 응력과 응력구배를 최소화시키기 위한 적층, 도핑 방법 및 열처리에 따른 특성을 분석하였다. 이를 위하여 브리지 빔과 캔티레바 테스트 패턴을 제작하여 기계적 응력 특성을 측정하였으며, 아울러 공정 조건별 개별 시료에 대한 물성을 XRD, SIMS등으로 분석하였다. 공진 구조체는 대칭적 증착 구조를 가지며, 최종적으로 $6.5{\mu}m$의 두께로 적층되었다. 제작된 평면형 공진 구조체의 진동특성은 직류 15V, 교류 0.05V의 구동전압, 1000mtorr 압력에서 공진 진폭이 $5{\mu}m$ Q값이 1270임을 보였으며, 개발된 마이크로 폴리실리콘 공진체는 마이크로 자이로 및 가속도 센서에 응용될 수 있다.

  • PDF

광공진 현상을 이용한 입체 영상센서 및 신호처리 기법 (Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing)

  • 박용화;유장우;박창영;윤희선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF