• Title/Summary/Keyword: MEMS equation

Search Result 31, Processing Time 0.026 seconds

Chaotic Phenomena in MEMS with Duffing Equation (Duffing 방정식을 가진 MEMS에서의 카오스 현상)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.709-716
    • /
    • 2011
  • Recently, there are many difficult for maintenance in the power in established sensor networks. In order to solve this problems, the power development has been interested using vibration in MEMS that insert the MEMS oscillator. In this paper, we propose the MEMS system with Duffing equation to generate vibration signal that can be use power signal in MEMS and confirm and verify the chaotic behaviors in vibration signal of MEMS by computer simulation. As a verification methods, we confirm the existence of period motion and chaotic motion by parameter variation through the time series, phase portrait, power spectrum and poincare map.

MATHEMATICAL ANALYSIS OF NONLINEAR DIFFERENTIAL EQUATION ARISING IN MEMS

  • Zhang, Ruifeng;Li, Na
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.705-714
    • /
    • 2012
  • In this paper, we study nonlinear equation arising in MEMS modeling electrostatic actuation. We will prove the local and global existence of solutions of the generalized parabolic MEMS equation. We present that there exists a constant ${\lambda}^*$ such that the associated stationary problem has a solution for any ${\lambda}$ < ${\lambda}^*$ and no solution for any ${\lambda}$ > ${\lambda}^*$. We show that when ${\lambda}$ < ${\lambda}^*$ the global solution converges to its unique maximal steady-state as $t{\rightarrow}{\infty}$. We also obtain the condition for the existence of a touchdown time $T{\leq}{\infty}$ for the dynamical solution. Furthermore, there exists $p_0$ > 1, as a function of $p$, the pull-in voltage ${\lambda}^*(p)$ is strictly decreasing with respect to 1 < $p$ < $p_0$, and increasing with respect to $p$ > $p_0$.

Nonlinear Phenomena in MEMS Device (MEMS 소자에서의 비선형 현상)

  • Kim, Ju-Wan;Koo, Young-Duk;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1073-1078
    • /
    • 2012
  • In this paper, we propose the MEMS system with Duffing equation to confirm nonlinear features in MEMS system. We also analyze nonlinear phenomena when adding the nonlinear term of another type. As a verification, we confirm chaotic motion by parameter variation through the time series, phase portrait and power spectrum.

Analysis on Effects of Design Variable Uncertainty on the Performance of MEMS Gyroscope Based on Sample Statistics (샘플 통계에 근거한 MEMS 자이로스코프의 설계변수 불확정성이 성능에 미치는 영향 분석 방법)

  • Kim, Yong-Woo;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.119-123
    • /
    • 2009
  • Recently, a MEMS gyroscope has been broadly fabricated and used due to development of a micromachining. However, there is a difference between the modeling design and the actual product and this difference can lead to the performance variation of a MEMS gyroscope. A classical design method does not exactly estimate the performance of a MEMS gyroscope. Therefore a design process considering the design variable uncertainty has to be employed to design MEMS gyroscope model. In this paper, the equation of motion of a MEMS gyroscope model is obtained to analyze the performance of a MEMS gyroscope and the effects of the design variables on the MEMS gyroscope performance are investigated. Finally the performance of MEMS gyroscope is estimated through a statistical analysis based on sample statistics.

  • PDF

Damping Characteristics of a Microcantilever for Radio Frequency-microelectromechanical Switches (RF-MEMS 스위치용 마이크로 외팔보의 감쇠특성)

  • Lee, Jin-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.553-561
    • /
    • 2011
  • A theoretical approach is carried out to predict the quality factors of flexible modes of a microcantilever on a squeeze-film. The frequency response function of an inertially-excited microcantilever beam is derived using an Euler-Bernoulli beam theory. The external force due to squeeze-film phenomenon is developed from the Reynolds equation. Slip boundary conditions are employed at the interfaces between the fluid and the structure to consider the gas rarefaction effect, and pressure boundary condition at both ends of fluid analysis region is enhanced to increase the exactness of predicted quality factors. To the end, an approximate equation is derived for the first bending mode of the microcantilever. Using the approximate equation, the quality factors of the second and third bending modes are calculated and compared with experimental results of previously reported work. The comparison shows the feasibility of the current approach.

Solutions of the Navier-Stokes equation in slip flow region (Slip flow 영역에서 Navier Stokes 방정식의 해석 연구)

  • Park, W.H.;Kim, T.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.597-602
    • /
    • 2000
  • In a MEMS(micro-electro mechanical system), the fluid may slip near the surface of a solid and have a discontinuous temperature profile. A numerical prediction in this slip flow region can provide a reasonable guide for the design and fabrication of micro devices. The compressible Navier-Stokes equation with Maxwell/smoluchowski boundary condition is solved for two simple systems; couette flow and pressure driven flow in a long channel. We found that the couette flow could be regarded as an incompressible system in low speed regions. For the pressure driven flow system, we observed nonlinear distribution of pressure in the long channel and numerical results showed a good agreement with the experimental results.

  • PDF

The Static and Dynamic Performance of a MEMS/MST Based Gas-Lubricated proceeding Bearing with the Slip Flow Effect

  • Kwak, H.-D.;Lee, Y.-B.;Kim, C.-H.;Lee, N.-S.;Choi, D.-H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.103-104
    • /
    • 2002
  • The influence of the slip flow on the MEMS/MST based gas-lubricated proceeding bearing is investigated. Based on the modified Reynolds equation, the numerical analysis of the finite difference method was developed by applying the first order slip flow approximation. The numerical prediction of bearing performance provides the significant results concerning the slip flow effect in micro scale gas-lubricated proceeding bearing. The result indicates that the load-carrying capacity as well as the rotordynamic coefficients were significantly reduced due to the slip flow. Through this work, it is concluded that the slip flow effect could not be ignored in the micro gas-lubricated proceeding bearing.

  • PDF

A Study of Stress Analysis of Multi-Grain Orthotropic Material by BEM (경계 요소법에 의한 직교 이방성 다결정 재료의 응력해석에 관한 연구)

  • Kim, Dong-Eun;Lee, Sang-Hun;Jeong, Il-Jung;Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.127-133
    • /
    • 2008
  • As the application of the MEMS parts increases, the structural safety of MEMS appears importantly. A lot of MEMS parts are made by a multi-grain silicon wafer, which is an orthotropic material. Moreover directions of the materials on each grain are distributed randomly. The stress analysis for the multi-grain is important factor in order to apply the MEMS parts to industrial applications. The finite element method (FEM) is commonly used by a stress analysis method but the boundary element method (BEM) is known as the result of the BEM is more accurate than that of the FEM since the fundamental solution are used. In this study, we derived the boundary integration equation for the orthotropic material by applying fundamental solutions with complex variables. The multi-region analysis procedure for the BEM and the multi-grain generation procedure by a random process technique are developed in order to apply the analysis of the multi-grain orthotropic material. The discontinuous element is used in order to remove the comer problem in the BEM. The results of the present method are compared with those of the finite element method in order to verify the present procedure.

Development of Attitude Heading Reference System based on MEMS for High Speed Autonomous Underwater Vehicle (고속 자율 무인잠수정 적용을 위한 MEMS 기술기반 자세 측정 장치 개발)

  • Hwang, A-Rom;Ahn, Nam-Hyun;Yoon, Seon-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.666-673
    • /
    • 2013
  • This paper proposes the performance evaluation test of attitude heading reference system (AHRS) suitable for small high speed autonomous underwater vehicle(AUV). Although IMU can provides the detail attitude information, it is sometime not suitable for small AUV with short operation time in view of price and the electrical power consumption. One of alternative for tactical grade IMU is the AHRS based micro-machined electro mechanical system(MEMS) which can overcome many problems that have inhibited the adoption of inertial system for small AUV such as cost and power consumption. A cost effective and small size AHRS which incorporates measurements from 3-axis MEMS gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for AUV and the attitude calculation algorithm is derived based the coordinate transform equation and Kalman filter. The developed AHRS was validated through various performance tests as like the magnetometer calibration, operating experiments using land mobile vehicle and flight motion simulator (FMS). The test of magnetometer calibration shows the developed MEMS AHRS is robust to the external magent field change and the test with land vehicle proves the leveling error of developed MEMS AHRS is below $0.5^{\circ}/hr$. The results of FMS test shows the fact that AHRS provides the measurement with $0.5^{\circ}/hr$ error during 5 minutes operation time. These results of performance evaluation tests showed that the developed AHRS provides attitude information which error of roll and pitch are below $1^{\circ}$ and the error of yaw is below $5^{\circ}$ and satisfies the required specification. It is expected that developed AHRS can provide the precise attitude measurement under sea trial with real AUV.

Characteristics of single/poly crystalline silicon etching by$Ar^+$ ion laser for MEMS applications (MEMS 응용을 위한 $Ar^+$ 이온 레이저에 의한 단결정/다결정 실리콘 식각 특성)

  • Lee, Hyun-Ki;Han, Seung-Oh;Park, Jung-Ho;Lee, Cheon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.396-401
    • /
    • 1999
  • In this study, $Ar^+$ ion laser etching process of single/poly-crystalline Si with $CCl_2F_2$ gas is investigated for MEMS applications. In general, laser direct etching process is useful in microelectronic process, fabrication of micro sensors and actuators, rapid prototyping, and complementary processing because of the advantages of 3D micromachining, local etching/deposition process, and maskless process with high resolution. In this study, a pyrolytic method, in which $CCl_2F_2$ gasetches molten Si by the focused laser, was used. In order to analyze the temperature profile of Si by the focused laser, the 3D heat conduction equation was analytically solved. In order to investigate the process parameters dependence of etching characteristics, laser power, $CCl_2F_2$ gas pressure, and scanning speed were varied and the experimental results were observed by SEM. The aspect ratio was measured in multiple scanning and the simple 3D structure was fabricated. In addition, the etching characteristics of $6\mum$ thick poly-crystalline Si on the insulator was investigated to obtain flat bottom and vertical side wall for MEMS applications.

  • PDF