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MATHEMATICAL ANALYSIS OF NONLINEAR

DIFFERENTIAL EQUATION ARISING IN MEMS

Ruifeng Zhang and Na Li

Abstract. In this paper, we study nonlinear equation arising in MEMS
modeling electrostatic actuation. We will prove the local and global ex-
istence of solutions of the generalized parabolic MEMS equation. We

present that there exists a constant λ∗ such that the associated station-
ary problem has a solution for any λ < λ∗ and no solution for any λ > λ∗.
We show that when λ < λ∗ the global solution converges to its unique

maximal steady-state as t → ∞. We also obtain the condition for the
existence of a touchdown time T ≤ ∞ for the dynamical solution. Fur-
thermore, there exists p0 > 1, as a function of p, the pull-in voltage λ∗(p)
is strictly decreasing with respect to 1 < p < p0, and increasing with

respect to p > p0.

1. Introduction

Electrostatic actuation is crucial for micro-electromechanical systems
(MEMS), which are based on an electrostatic-controlled tunable capacitor, and
widely used in accelerometers for airbag deployment in automobiles, micro-
resonators, switches, micro-mirrors, accelerometers, and so on. The simplicity
and importance of this technique have led many applied mathematicians and
engineers to study mathematical models of electrostatic-elastic interactions. A
mathematical model of the physical phenomena, leading to a partial differen-
tial equation for the dimensionless dynamic deflection of the membrane, was
derived and analyzed in [2] and [6]. In the damping-dominated limit, and us-
ing a narrow-gap asymptotic analysis, the dimensionless dynamic deflection
v = v(x, t) of the membrane on a bounded domain Ω in RN (N ≥ 2), is found
to satisfy the following parabolic problem ([1, 5, 6, 13])

(1.1)

 −vt +D∆v = λf(x)
(L+v)p , x ∈ Ω, t ∈ (0, T ),

v(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),
v(x, 0) = 0, x ∈ Ω,
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where λ > 0 is a parameter, D > 0, p > 1 are fixed constants. In particular the
problem with p = 2 has been intensively studied ([5, 6]), which models a simple
electrostatic MEMS device consisting of a thin dielectric elastic membrane with
boundary supported at 0 above a rigid ground plate located at −L. Here u is
modeled to describe dynamic deflection of the elastic membrane. The voltage
V must be limited, or the elastic plate will be pulled-in.

The parameter D > 0 is the tension constant. The parameter λ in (1.1)
characterizes the relative strength of the electro-static and mechanical forces
in the system, and is proportional to the supply voltage squared V 2. We shall
use here the parameter λ (resp., λ∗) to represent the applied voltage V (resp.,
pull-in voltage V ∗). Referred to as the permittivity profile, f(x) satisfy

(1.2)

{
f ∈ Cα(Ω̄) for some α ∈ (0, 1], 0 ≤ f ≤ 1

f > 0 on a subset of Ω of positive measure.

Recently, Pelesko, Ghoussoub and Guo, Wang and Ruan studied in [4, 11, 12]
the steady-states of (1.1) with p = 2, p > 0, respectively, when f(x) is assumed
to be bounded away from zero. They established in above cases an upper
bound λ1 for λ∗, respectively, and derived numerical results for the power-
law permittivity profile, from which the larger pull-in voltage and thereby the
larger pull-in distance, the existence and multiplicity of the steady-states were
observed.

In [5, 6], authors studied the dynamic behavior of (1.1) with p = 2. They
considered a more general class of profiles f(x), i.e., 0 ≤ f(x) ≤ 1 on Ω
with f(x) > 0 on a subset of positive measure. They obtained larger pull-in
voltage λ∗ and larger pull-in distance for different classes of varying permittivity
profiles. They established upper and lower bounds on first touchdown times,
and analyzed their dependence on f , λ and Ω by applying various analytical
and numerical techniques.

In [8], Hui studied the following nonlocal parabolic equation

(1.3)


ut = ∆u+ λ

(1−u)2(1+χ
∫
Ω

dy
1−u )2

, x ∈ Ω, t ∈ (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),
u(x, 0) = u0, x ∈ Ω,

where χ > 0 is a constant. He obtained upper bounds for the quenching time
of the solution of the nonlocal parabolic MEMS equation in Ω× (0,∞), when
λ is large. Furthermore, he studied the generalized parabolic MEMS equation
in [7]. He obtained a series of sharp existence theorems for solution of the
generalized MEMS equation.

It is often convenient to take the change of variable u = −v in considering
problem (1.1). Then we have

(1.4)

 ut −D∆u = λf(x)
(L−u)p , x ∈ Ω, t ∈ (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),
u(x, 0) = 0, x ∈ Ω,
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and the associated stationary problem

(1.5)

{
−D∆u = λf(x)

(L−u)p , x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω.

Let Q = {λ > 0 | (1.5) possesses at least one solution} and the number

(1.6) λ∗ = λ∗(Ω, f, p) = sup
λ∈Q

λ.

The constant λ∗ is called the pull-in voltage of the equation (1.5) in the liter-
ature of MEMS.

In this paper, we deal with issues of global convergence in the dynamic
problem (1.4). For p > 1, and f(x) satisfies (1.2), we will prove the local and
global existence and comparison theorems of solutions of the dynamic problem
(1.4). We present that there exists a constant λ∗ such that the associated
stationary problem (1.5) has a solution for any λ < λ∗ and no solution for any
λ > λ∗. We show that when λ < λ∗ the global solution converges to its unique
minimal steady-state as t → ∞. We also obtain the condition for the existence
of a touchdown time T ≤ ∞ for the dynamical solution. Furthermore, there
exists p0 > 1, as a function of p, the pull-in voltage λ∗(p) is strictly decreasing
with respect to 1 < p < p0, and increasing with respect to p > p0. It is
interesting that, we extend our method to study a more general model which
is widely useful in applications ([1, 5, 6]).

2. Global regular solution for problem (1.4)

In this section, we will use upper-and-lower solution method to study the
existence of solutions for the parabolic equation according to the problem (1.4).

We define upper and lower solutions, u+ and u−, if they satisfy, respectively,

(2.1)

 u+
t −D∆u+ ≥ λf(x)

(L−u+)p , x ∈ Ω, t ∈ (0, T ),

u+(x, t) ≥ 0, x ∈ ∂Ω, t ∈ (0, T ),
u+(x, 0) ≥ 0, x ∈ Ω, t = 0,

and

(2.2)

 u−
t −D∆u− ≤ λf(x)

(L−u−)p , x ∈ Ω, t ∈ (0, T ),

u−(x, t) ≤ 0, x ∈ ∂Ω, t ∈ (0, T ),
u−(x, 0) ≤ 0, x ∈ Ω, t = 0.

We now invoke an iterative scheme

(2.3)

 (un)t −D∆un + Cun = λf(x)
(L−un−1)p

+ Cun−1, x ∈ Ω, t ∈ (0, T ),

un(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), n = 1, 2, 3, . . .
un(x, 0) = 0, x ∈ Ω, t = 0,

where C > 0 is a suitable constant and u0 = 0. Because 0 ≤ u < L, we can
confirm that u = 0 is the lower solution u−. To obtain a solution of the problem
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(1.4), we assume that it has a upper solution u+, then u1 and u+ satisfy:

(u+ − u1)t −D∆(u+ − u1) + C(u+ − u1)

≥ λf(x)

(L− u+)p
− λf(x)

Lp
+ C(u+ − u0)

= λf(x)
Lp − (L− u+)p

Lp(L− u+)p
+ Cu+

> 0, x ∈ Ω, t ∈ (0, T ).

Because of u+ − u1 ≥ 0, x ∈ ∂Ω, t ∈ [0, T ), we can use the maximum principle
to obtain u1 ≤ u+, x ∈ Ω, t ∈ (0, T ).

Let u1 and u− satisfy:

(u1 − u−)t −D∆(u1 − u−) + C(u1 − u−) ≥ 0, x ∈ Ω, t ∈ (0, T ).

By u1 − u− ≥ 0, x ∈ ∂Ω, t ∈ [0, T ), we can also use the maximum principle to
obtain u− ≤ u1, x ∈ Ω, t ∈ (0, T ).

We can obtain a sequence as the same method:

(2.4) 0 = u− ≤ u1 ≤ · · · ≤ un−1 ≤ un ≤ · · · ≤ u+ < L.

We now show that when λ is small enough, the problem (1.4) has a upper
solution. To see this, we use k1 and U1 to denote the first eigenvalue and the
associated eigenfunction of the operate −∆ over a large bounded domain Ω1

containing Ω, so that U1 = 0 on ∂Ω1 and U1 > 0 in Ω1. Let ε > 0 be a small
number so that 0 < εU1 < L

2 . Then −D∆(εU1) = εk1DU1. We need that

(2.5) εk1DU1 ≥ λf(x)

(L− εU1)p
, x ∈ Ω, t ∈ (0, T ),

thus

(2.6) λf(x) ≤ εk1DU1(L− εU1)
p,

i.e.,

(2.7) 0 < λ∗ ≤ k1D
pp

(p+ 1)p+1

Lp+1

infx∈Ω f(x)
, p > 1.

If 0 ≤ λ < λ∗, then εU1 is the upper solution, i.e., 0 ≤ u− < εU1 = u+ < L.
So, we can obtain the existence of the solution of the problem (1.4) with the

upper and lower solution.

Lemma 2.1. Assume f is a function satisfying (1.2) on a bounded domain Ω
in RN , and p > 1. If 0 ≤ λ < λ∗, then there exists a global regular solution
u(x, t) for (1.4), where the finite voltage λ∗ = λ∗(Ω, f, p) > 0 is as in (2.7).

Corollary 2.2. Let 0 ≤ λ < λ∗ and 0 ≤ f ∈ C(Ω̄). Suppose u1, u2 are
nonnegative subsolution and supersolution of (1.4) in Ω × (0, T ), respectively.
Then u1 ≤ u2 in Ω̄× (0, T ).
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Lemma 2.3. Under the condition of the Lemma 2.1, then problem (1.4) has a
unique global solution.

Proof. Suppose u1 and u2 are solutions of (1.4) on the domain Ω× [0, T ] such
that ∥ui∥L∞(Ω×[0,T ]) < L for i = 1, 2. Let u = u1 − u2, then we have

(2.8) ut −D△ u = gu,

with initial data u(x, 0) = 0 and zero boundary condition. Here

(2.9) g(x, t)=λf(x)
(L− u2)

p−1 + (L− u2)
p−2(L− u1) + · · ·+ (L− u1)

p−1

(L− u1)p(L− u2)p
.

The assumption on u1, u2 implies that g(x, t) ∈ L∞(Ω× [0, T ]). We now fix
T1 ∈ [0, T ] and consider the solution v of the problem

(2.10)

 vt +D∆v + gv = 0, x ∈ Ω, t ∈ (0, T1),
v(x, T1) = ξ(x) ∈ C0(Ω),
v(x, t) = 0, x ∈ ∂Ω.

The standard linear theory [5, 9] gives that the solution of (2.10) is a unique
and bounded. Now multiplying (2.8) by v, and integrating it on Ω × [0, T1],
together with (2.10), yield that

(2.11)

∫
Ω

u(x, T1)ξ(x)dx = 0,

for arbitrary T1 and ξ(x), which implies that u = 0, u1 = u2. □
Lemma 2.4. Let λ > 0, p > 1, and Ω ⊂ RN be a bounded domain such that
ball BR = BR(0) ⊂ Ω for some constant R > 0. Let 0 < f ∈ C(Ω̄), 0 ≤ u < L
be a solution of (1.4) in Ω× (0, T ) and 0 < δ ≤ infx∈Ω f(x). Suppose λ > 2nD

δR2 .
Then T satisfies

(2.12) T ≤ 1

λδ

(
1− 2nD

λδR2

)−1

.

Proof. Let w = L− u and w0 = L. Then w satisfies

(2.13)

 wt −D∆w + λf(x)w−p = 0, x ∈ Ω, t ∈ (0, T ),
w(x, t) = L, x ∈ ∂Ω, t ∈ (0, T ),
w(x, 0) = L, x ∈ Ω.

Let

η(x, t) = 1− λδγt
(
1− |x|2

R2

)
, x ∈ BR, t ∈ (0, T ),

where γ = 1− 2nD
λδR2 > 0. Then

(2.14)
2nD

R2
· 1

λδγ
= γ−1 − 1.

By (2.14), we get

ηt −D∆η + λδη−p ≥ λδγ

(
γ−1 − 1− 2nD

R2
t

)
≥ 0, x ∈ BR, t ∈ (0, T1),
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where T1 = min{T, 1
λδγ }. Hence η is a supersolution of

(2.15)

 ηt −D∆η + λδη−p = 0, (x, t) ∈ BR × (0, T1),
η(x, t) = L, (x, t) ∈ ∂BR × (0, T1),
η(x, 0) = L, x ∈ B̄R.

Suppose T > 1
λδγ . Since w is a subsolution of (2.15), by Corollary 2.2, we

have
0 < w ≤ η, (x, t) ∈ B̄R × (0, T1).

So 0 < w(0, 1
λδγ ) ≤ η(0, 1

λδγ ) = 0. Contradiction arise and (2.12) follows. □

Theorem 2.5. Assume f is a function satisfying (1.2) on a bounded domain
Ω in RN , and p > 1. Then for any λ > 0 there exists T > 0 such that (1.4)
has a unique solution 0 ≤ u < L in Ω× (0, T ) which satisfies

(2.16) u(x, t) = λ

∫ t

0

∫
Ω

G(x, y, t− s)
f(y)

(L− u(y, s))p
dyds, (x, t) ∈ Ω̄× (0, T ).

Where G(x, y, t) is the Dirichlet Green function for the heat equation in Ω ×
(0, T ).

Proof. Let

(2.17) T =
L+ a

2λ∥f∥L∞

(L− a

2

)p

, p > 1, 0 < a < 1,

and

(2.18) u1(x, t) = λ

∫ t

0

∫
Ω

G(x, y, t− s)
f(y)

Lp
dyds, (x, t) ∈ Ω̄× (0, T ).

Let T1 = sup{0 < t1 < T : u1 < L+a
2 , (x, t) ∈ Ω̄× (0, t1)}. Suppose T1 < T .

∀(x, t) ∈ Ω̄× (0, T1], then u1 ≤ λ∥f∥L∞ · t
Lp < L+a

2 . By continuity of u1 there

exists 0 < δ < T−T1

2 such that u1 < L+a
2 holds for all (x, t) ∈ Ω̄ × (0, T1 + δ].

This contradicts the maximality of T1. Hence T1 = T and (2.18) holds for all
(x, t) ∈ Ω̄× (0, T ].

We define

(2.19) un+1(x, t) = λ

∫ t

0

∫
Ω

G(x, y, t− s)
f(y)

(L− un)p
dyds, (x, t) ∈ Ω̄× (0, T ).

Let Tn = sup{0 < t1 < T : un < L+a
2 , (x, t) ∈ Ω̄ × (0, t1)}. By induction, we

obtain Tn = T for all n ∈ Z+. Then

(2.20) un <
L+ a

2
, ∀(x, t) ∈ Ω̄× (0, T ).

By (2.18), (2.19), (2.20) and standard parabolic theory [3], we have un ∈
C2,1(Ω̄× (0, T ]) for all n ≥ 2. Then un satisfies

(2.21)


∂un

∂t −D∆un = λf(x)
(L−un)p

, x ∈ Ω, t ∈ (0, T ),

un(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),
un(x, 0) = 0, x ∈ Ω.
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By (2.20), (2.21) and the Schauder estimates for the heat equation ([3, 7])

{un}∞n=2 are uniformly bounded in C2+β,1+ β
2 (Ω′) ([7]) for any compact subset

Ω′ ⊂ Ω̄ × (0, T ], where 0 < β < 1 is some constant. By the Ascoli theorem
and a diagonalization argument {un}∞n=2 has a subsequence which converges

uniformly in C2+β,1+ β
2 (Ω′) to some function u for any compact subset Ω′ ⊂

Ω̄× (0, T ] as n → ∞. Then u satisfies (2.16),

(2.22) u(x, t) ≤ L+ a

2
< L, ∀(x, t) ∈ Ω̄× (0, T ),

and (1.4). Hence u is a solution of (1.4) in Ω× (0, T ). □

By an argument similar to the proof of Theorem 2.5, we have the following
theorem.

Theorem 2.6. Let p > 1 and

0 < f ∈ Cα(RN ) for some constant 0 < α < 1.

Then for any λ > 0 there exists a constant T > 0 such that Cauchy problem

(2.23)

{
ut −D∆u = λf(x)

(L−u)p , x ∈ RN , t ∈ (0, T ),

u(x, 0) = 0, x ∈ RN ,

has a solution 0 ≤ u < L in RN × (0, T ) which satisfies

(2.24) u(x, t) = λ

∫ t

0

∫
RN

Z(x, y, t− s)
f(y)

(L− u(y, s))p
dyds,

where Z(x, y, t) = (4Dπt)−
N
2 e−

|x−y|2
4Dt .

3. Global convergence at infinite time

In this section we will prove the convergence of solution of (1.4) for any
0 < λ < λ∗ as t → ∞. We also obtain the conditions for the solution of (1.4)
to have finite touchdown time or infinite time.

Definition 3.1. If u∗ is a solution of (1.5) such that for any other solution v
of (1.5), one has

(3.1) u∗ ≤ v, a.e. x ∈ Ω,

we say that u∗ is a unique minimal solution of (1.5).

In [10, 12], Lin and Yang, Wang and Ruan derived the equation (1.5) with
p = 2, p > 0 in the study of charged plates in electrostatic actuators, re-
spectively. Here λ = kV 2 where V is the electric voltage and k is a positive
constant. For the boundary condition u|∂Ω = 0, they found that there exists
0 < λ∗ < ∞ such that for λ ∈ (0, λ∗), (1.5) has a minimal and regular solution
u∗. For λ > λ∗, (1.5) does not have any regular solution.

Similarly to the method in [4, 6, 7, 10, 11, 12], by the definition λ∗ (1.6) and
the proof of Lemma 2.1 we can get:
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Lemma 3.2. Suppose λ∗ = λ∗(Ω, f, p) > 0 is as in Lemma 2.1. Then the
following hold:

1. If 0 ≤ λ < λ∗, there exists the regular solution of (1.5).
2. If λ > λ∗, there exists no solution of (1.5).

Proposition 3.3. Let Ω1 ⊂ Ω2 and let f1, f2 satisfy (1.2) in Ω1,Ω2, re-
spectively for some constant 0 < α < 1 such that f1 ≤ f2 in Ω1. Then
λ∗(Ω1, f1, p) ≥ λ∗(Ω2, f2, p).

If 0 < λ < λ∗(Ω2, f2, p) and v1, v2 are the minimal solutions of (1.5) with
Ω = Ω1,Ω2, f = f1, f2, respectively, then v1 ≤ v2 in Ω1. If moreover Ω = Ω1 =
Ω2 and f1 ̸≡ f2, then v1 < v2 in Ω.

Proof. For any λ < λ∗(Ω2, f2, p), let v2 be the minimal solution of (1.5) with
Ω = Ω2, f = f2. Then v2 is a supersolution of (1.5) with Ω = Ω1, f = f1, the
minimal solution v1 of (1.5) satisfies 0 ≤ v1 ≤ v2 in Ω1. Hence λ∗(Ω1, f1, p) ≥
λ∗(Ω2, f2, p).

Suppose that Ω = Ω1 = Ω2, and G(x, y) be the Green function for ∆ in Ω.
Then

(3.2) vi(x) = λ

∫
Ω

G(x, y)
fi(y)

(L− vi(y))p
dy, ∀i = 1, 2.

If f1 ̸≡ f2, there exists a set A ⊂ Ω of positive measure such that f1
(L−v1)p

<
f2

(L−v2)p
in A. Then by (3.2), v1 < v2 in Ω and the proposition follows. □

Theorem 3.4. Assume f satisfies (1.2), p > 1, then for every 0 < λ < λ∗,
there exists a unique global solution u(x, t) of (1.4) which monotonically con-
verges as t −→ +∞ to the unique minimal solution u∗ of (1.5). Furthermore,
there exists p0 > 1, as a function of p, the pull-in voltage λ∗(p) is smooth,
strictly decreasing with respect to 1 < p < p0, and increasing with respect to
p > p0.

Proof. Fix 0 < λ < λ∗, using the method of [4, 10] we can obtain the existence
of an unique minimal solution u∗ of (1.5). It is clear that the pair u− = 0
and u+ = u∗ are sub- and sup-solutions of (1.4). This implies that the unique
global solution u(x, t) of (1.4) satisfies L > u∗ ≥ u ≥ 0 in Ω× (0,∞).

By differentiating in time and setting v = ut, we get for any fixed T0 > 0

(3.3)

 vt = D∆v + pλf(x)
(L−u)p+1 v, (x, t) ∈ Ω× (0, T0),

v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T0),
v(x, 0) ≥ 0, x ∈ Ω.

Here pλf(x)
(L−u)p+1 is a locally bounded non-negative function, and by the strong

maximum principle, we get that ut = v > 0 for (x, t) ∈ Ω× (0, T0). Otherwise
ut = 0, i.e., u(x, t) = u∗ for any t > 0. It follows that ut > 0 holds, and since u
is bounded, this monotonicity property implies that the unique global solution
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u(x, t) converges to some function u∗ as t −→ +∞. Hence,

(3.4) 0 ≤ u∗ ≤ u∗ < L, x ∈ Ω.

The linear stationary boundary problem

(3.5)

{
D∆v + λf(x)

(L−u∗)p = 0, x ∈ Ω,

v = 0, x ∈ ∂Ω.

Let ω(x, t) = u(x, t)− v(x). Then ω satisfies

(3.6)


ωt −D∆ω = λf(x)[ 1

(L−u)p − 1
(L−u∗)p ], (x, t) ∈ Ω× (0,∞),

ω(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),
ω(x, 0) = −v(x), x ∈ Ω.

By a standard eigenfunction expansion, we imply that the solution ω of (3.6)
also converges to zero in Lp(Ω) as t −→ +∞. This shows that u → v in Lp(Ω)
as t −→ +∞. But since u → u∗ pointwise in Ω as t −→ +∞, we deduce that
v(x) ≡ u∗(x) in Lp(Ω), which implies that u∗(x) is also a solution for (1.5). The
minimal property of u∗(x) then yields that u∗(x) ≡ u∗(x) on Ω, from which it
follows that for every x ∈ Ω, we have u(x, t) ↓ u∗ as t −→ +∞.

Following Section 2, we define the pull-in voltage λ∗, that is as in Lemma
2.1. We use λ∗(p) to denote the function

(3.7) λ∗(p) = C
(Lp)p

(p+ 1)p+1
,

where C = k1DL
infx∈Ω f(x) . However, since

(3.8) λ∗
p = λ∗(p) ln(

Lp

p+ 1
).

Fix 1 < L < 2, there exists p0 = 1
L−1 > 1, we see that there holds

(3.9) λ∗
p < 0, if 1 < p < p0,

and

(3.10) λ∗
p > 0, if p > p0.

Which imply that λ∗(p) is strictly decreasing with respect to 1 < p < p0, and
increasing with respect to p > p0. The proof of the theorem is complete. □

We know from Lemma 3.2 that there is no solution for (1.5) as soon as
λ > λ∗. Since the solution u(x, t) of (1.4) is strictly increasing in time t,
then there must be T ≤ ∞ such that u(x, t) reaches L at some point of Ω̄ as
t → T−. Otherwise, a proof similar to Theorem 3.4 would imply that u(x, t)
will converge to its steady-state which is then the unique minimal solution u∗
of (1.5), contrary to the hypothesis that λ > λ∗. We have:

Corollary 3.5. Assume f satisfies (1.2), p > 1, if λ > λ∗, then the solution
u(x, t) of (1.4) must touchdown at a finite time or infinite time.



714 RUIFENG ZHANG AND NA LI

Acknowledgments. The authors would like to thank Professor Yisong Yang
and the referee for guidance regarding this paper. This work was supported
in part by the Natural Science Foundation of Henan Province (112300410054,
12A110004) of China.

References

[1] P. Esposito, N. Ghoussoub, and Y. Guo, Mathematical analysis of partial differential
equations modeling electrostatic MEMS, Courant Lecture Notes in Mathematics 20, New
York, 2010.

[2] G. Flores, G. A. Mercado, J. A. Pelesko, and N. Smyth, Analysis of the dynamics and

touchdown in a model of electrostatic MEMS, SIAM J. Appl. Math. 67 (2006/2007),
no. 2, 434–446.

[3] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., En-
glewood Cliffs, N.J., U.S.A., 1964.

[4] N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS
devices: Stationary case, SIAM J. Math. Anal. 38 (2006/07), no. 5, 1423–1449.

[5] , On the partial differential equations of electrostatic MEMS devices II: Dynamic

case, Nonlinear Differential Equations Appl. 15 (2008), no. 1-2, 115–145.
[6] Y. Guo, Z. Pan, and M. Ward, Touchdown and pull-in voltage behavior of a MEMS

device with varying dielectric properties, SIAM J. Appl. Math. 66 (2005), no. 1, 309–
338.

[7] K. M. Hui, Global and touchdown behaviour of the generalized MEMS device equation,
Adv. Math. Sci. Appl. 19 (2009), no. 2, 347–370.

[8] , Quenching behaviour of a nonlocal parabolic MEMS equation, http://
arxiv.org/0908.1227v2.

[9] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Uralceva, Linear and Quasilinear
Equations Of Parabolic Type, Transl. Math. Monographs, Amer. Math. Soc., 23, Provi-
dence, R. I. USA, 1968.

[10] F. H. Lin and Y. S. Yang, Nonlinear non-local elliptic equation modelling electrostatic

actuation, Proc. R. Soc. A 463 (2007), no. 2081, 1323–1337.
[11] J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric

properties, SIAM J. Appl. Math. 62 (2001/2002), no. 3, 888–908.

[12] Z. P. Wang and L. Z. Ruan, On a class of semilinear elliptic problems with singular
nonlinearities, Appl. Math. Comput. 193 (2007), no. 1, 89–105.

[13] D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equa-
tions, Calc. Var. Partial Differential Equations 37 (2010), no. 1-2, 259–274.

Ruifeng Zhang

Institute of Contemporary Mathematics
Henan University
and
College of Mathematics and Information Science

Henan University
Kaifeng, Henan Province, 475001, P. R. China
E-mail address: zrf615@henu.edu.cn

Na Li
Wan fang College of Science Technology HPU
Zhengzhou, Henan Province, 451400, P. R. China

E-mail address: ln2005517@sina.com


